Skip to main content

Boosting for Control of Dynamical Systems

Author(s): Agarwal, Naman; Brukhim, Nataly; Hazan, Elad; Lu, Zhou

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15s05
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, Naman-
dc.contributor.authorBrukhim, Nataly-
dc.contributor.authorHazan, Elad-
dc.contributor.authorLu, Zhou-
dc.date.accessioned2021-10-08T19:51:01Z-
dc.date.available2021-10-08T19:51:01Z-
dc.date.issued2020en_US
dc.identifier.citationAgarwal, Naman, Nataly Brukhim, Elad Hazan, and Zhou Lu. "Boosting for Control of Dynamical Systems." In Proceedings of the 37th International Conference on Machine Learning (2020): pp. 96-103.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v119/agarwal20b/agarwal20b.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15s05-
dc.description.abstractWe study the question of how to aggregate controllers for dynamical systems in order to improve their performance. To this end, we propose a framework of boosting for online control. Our main result is an efficient boosting algorithm that combines weak controllers into a provably more accurate one. Empirical evaluation on a host of control settings supports our theoretical findings.en_US
dc.format.extent96 - 103en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the 37th International Conference on Machine Learningen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleBoosting for Control of Dynamical Systemsen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
BoostingControlDynamicalSystems.pdf2.73 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.