Skip to main content

Heitler-London model for acceptor-acceptor interactions in doped semiconductors

Author(s): Durst, AC; Castoria, KE; Bhatt, Ravindra N

To refer to this page use:
Abstract: The interactions between acceptors in semiconductors are often treated in qualitatively the same manner as those between donors. Acceptor wave functions are taken to be approximately hydrogenic and the standard hydrogen molecule Heitler-London model is used to describe acceptor-acceptor interactions. But due to valence band degeneracy and spin-orbit coupling, acceptor states can be far more complex than those of hydrogen atoms, which brings into question the validity of this approximation. To address this issue, we develop an acceptor-acceptor Heitler-London model using single-acceptor wave functions of the form proposed by Baldereschi and Lipari, which more accurately capture the physics of the acceptor states. We calculate the resulting acceptor-pair energy levels and find, in contrast to the two-level singlet-triplet splitting of the hydrogen molecule, a rich ten-level energy spectrum. Our results, computed as a function of interacceptor distance and spin-orbit coupling strength, suggest that acceptor-acceptor interactions can be qualitatively different from donor-donor interactions, and should therefore be relevant to the control of two-qubit interactions in acceptor-based qubit implementations, as well as the magnetic properties of a variety of p-doped semiconductor systems. Further insight is drawn by fitting numerical results to closed-form energy-level expressions obtained via an acceptor-acceptor Hubbard model.
Publication Date: 26-Oct-2017
Electronic Publication Date: 26-Oct-2017
Citation: Durst, AC, Castoria, KE, Bhatt, RN. (2017). Heitler-London model for acceptor-acceptor interactions in doped semiconductors. Physical Review B, 96 (10.1103/PhysRevB.96.155208
DOI: doi:10.1103/PhysRevB.96.155208
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review B
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.