Skip to main content

Feedback control of slowly-varying transient growth by an array of plasma actuators

Author(s): Hanson, Ronald E; Bade, Kyle M; Belson, Brandt A; Lavoie, Philippe; Naguib, Ahmed M; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14s4g
Abstract: Closed-loop feedback control of boundary layer streaks embedded in a laminar boundary layer and experiencing transient growth, which is inherent to bypass boundary layer transition, is experimentally investigated. Streaky disturbances are introduced by a spanwise array of cylindrical roughness elements, and a counter disturbance is provided by a spanwise array of plasma actuators, which are capable of generating spanwise-periodic counter rotating vortices in the boundary layer. Feedback is provided by a spanwise array of shear stress sensors. An input/output model of the system is obtained from measurements of the boundary layer response to steady forcing, and used to design and analyze a proportional-integral controller, which targets a specific spanwise wavenumber of the disturbance. Attention is directed towards a quasi-steady case in which the controller update is slower than the convective time scale. This choice enables addressing issues pertinent to sensing, actuation, and control strategy that are also relevant to the control of unsteady disturbances but without the full complexity of transient effects. The feedback controller and plasma actuators perform well, attenuating the streamwise streaks both in the vicinity of the sensors and farther downstream. The controller remains effective for a range of off-design flow conditions, such as when the free-stream velocity is varied.
Publication Date: Feb-2014
Citation: Hanson, Ronald E, Bade, Kyle M, Belson, Brandt A, Lavoie, Philippe, Naguib, Ahmed M, Rowley, Clarence W. "Feedback control of slowly-varying transient growth by an array of plasma actuators" Physics of Fluids, 26, 2, 024102 - 024102, doi:10.1063/1.4863178
DOI: doi:10.1063/1.4863178
ISSN: 1070-6631
EISSN: 1089-7666
Pages: 024102 - 024102
Type of Material: Journal Article
Journal/Proceeding Title: Physics of Fluids
Version: This is the publisher’s version of the article (version of record). All rights reserved to the publisher. Please refer to the publisher's site for terms of use.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.