Skip to main content

A Dependent LP-Rounding Approach for the k-Median Problem

Author(s): Charikar, Moses; Li, Shi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14r6x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharikar, Moses-
dc.contributor.authorLi, Shi-
dc.date.accessioned2021-10-08T19:44:38Z-
dc.date.available2021-10-08T19:44:38Z-
dc.date.issued2012en_US
dc.identifier.citationCharikar, Moses, and Shi Li. "A Dependent LP-Rounding Approach for the k-Median Problem." Automata, Languages, and Programming (2012): 194-205. doi:10.1007/978-3-642-31594-7_17en_US
dc.identifier.issn0302-9743-
dc.identifier.urihttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.8729&rep=rep1&type=pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14r6x-
dc.description.abstractIn this paper, we revisit the classical k-median problem. Using the standard LP relaxation for k-median, we give an efficient algorithm to construct a probability distribution on sets of k centers that matches the marginals specified by the optimal LP solution. Analyzing the approximation ratio of our algorithm presents significant technical difficulties: we are able to show an upper bound of 3.25. While this is worse than the current best known 3 + ε guarantee of [2], because: (1) it leads to 3.25 approximation algorithms for some generalizations of the k-median problem, including the k-facility location problem introduced in [10], (2) our algorithm runs in 𝑂̃ (𝑘3𝑛2/𝛿2) time to achieve 3.25(1 + δ)-approximation compared to the O(n 8) time required by the local search algorithm of [2] to guarantee a 3.25 approximation, and (3) our approach has the potential to beat the decade old bound of 3 + ε for k-median. We also give a 34-approximation for the knapsack median problem, which greatly improves the approximation constant in [13]. Using the same technique, we also give a 9-approximation for matroid median problem introduced in [11], improving on their 16-approximation.en_US
dc.format.extent194 - 205en_US
dc.language.isoen_USen_US
dc.relation.ispartofAutomata, Languages, and Programmingen_US
dc.relation.ispartofseriesLecture Notes in Computer Science;7391-
dc.rightsAuthor's manuscripten_US
dc.titleA Dependent LP-Rounding Approach for the k-Median Problemen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1007/978-3-642-31594-7_17-
dc.identifier.eissn1611-3349-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
DependentLPRoundingApproachKMedianProblem.pdf198.3 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.