Skip to main content

Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System

Author(s): Wu, P-Y; Fang, C-C; Chang, JM; Kung, S-Y

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14m91993
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, P-Y-
dc.contributor.authorFang, C-C-
dc.contributor.authorChang, JM-
dc.contributor.authorKung, S-Y-
dc.date.accessioned2024-01-21T19:57:10Z-
dc.date.available2024-01-21T19:57:10Z-
dc.date.issued2016-08-02en_US
dc.identifier.citationWu, P-Y, Fang, C-C, Chang, JM, Kung, S-Y. (2017). Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System. IEEE Transactions on Cybernetics, 47 (3916 - 3927. doi:10.1109/TCYB.2016.2590472en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14m91993-
dc.description.abstractIn this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N^2) training time.en_US
dc.format.extent3916 - 3927en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Cyberneticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleCost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication Systemen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/TCYB.2016.2590472-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
tcyber_wu_16.pdf2.32 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.