To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr14m91993
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wu, P-Y | - |
dc.contributor.author | Fang, C-C | - |
dc.contributor.author | Chang, JM | - |
dc.contributor.author | Kung, S-Y | - |
dc.date.accessioned | 2024-01-21T19:57:10Z | - |
dc.date.available | 2024-01-21T19:57:10Z | - |
dc.date.issued | 2016-08-02 | en_US |
dc.identifier.citation | Wu, P-Y, Fang, C-C, Chang, JM, Kung, S-Y. (2017). Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System. IEEE Transactions on Cybernetics, 47 (3916 - 3927. doi:10.1109/TCYB.2016.2590472 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr14m91993 | - |
dc.description.abstract | In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N^2) training time. | en_US |
dc.format.extent | 3916 - 3927 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | IEEE Transactions on Cybernetics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1109/TCYB.2016.2590472 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tcyber_wu_16.pdf | 2.32 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.