Skip to main content

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Author(s): Gómez-Bombarelli, Rafael; Wei, Jennifer N; Duvenaud, David; Hernández-Lobato, José Miguel; Sánchez-Lengeling, Benjamín; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1451d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGómez-Bombarelli, Rafael-
dc.contributor.authorWei, Jennifer N-
dc.contributor.authorDuvenaud, David-
dc.contributor.authorHernández-Lobato, José Miguel-
dc.contributor.authorSánchez-Lengeling, Benjamín-
dc.contributor.authorSheberla, Dennis-
dc.contributor.authorAguilera-Iparraguirre, Jorge-
dc.contributor.authorHirzel, Timothy D-
dc.contributor.authorAdams, Ryan P-
dc.contributor.authorAspuru-Guzik, Alán-
dc.date.accessioned2021-10-08T19:45:42Z-
dc.date.available2021-10-08T19:45:42Z-
dc.date.issued2018en_US
dc.identifier.citationGómez-Bombarelli, Rafael, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules." ACS Central Science 4, no. 2 (2018): pp. 268-276. doi:10.1021/acscentsci.7b00572en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1451d-
dc.descriptionSupporting Information: https://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00572/suppl_file/oc7b00572_si_001.pdfen_US
dc.description.abstractWe report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.en_US
dc.format.extent268 - 276en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofACS Central Scienceen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleAutomatic Chemical Design Using a Data-Driven Continuous Representation of Moleculesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1021/acscentsci.7b00572-
dc.identifier.eissn2374-7951-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
ChemDesignDataDriveRepresentMolecules.pdf3.21 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.