Blind De-anonymization Attacks using Social Networks
Author(s): Lee, W-H; Ji, S; Liu, C; Mittal, Prateek; Lee, Ruby B
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr13s0g
Abstract: | It is important to study the risks of publishing privacy-sensitive data. Even if sensitive identities (e.g., name, social security number) were removed and advanced data perturbation techniques were applied, several de-anonymization attacks have been proposed to re-identify individuals. However, existing attacks have some limitations: 1) they are limited in de-anonymization accuracy; 2) they require prior seed knowledge and suffer from the imprecision of such seed information. We propose a novel structure-based de-anonymization attack, which does not require the attacker to have prior information (e.g., seeds). Our attack is based on two key insights: using multihop neighborhood information, and optimizing the process of deanonymization by exploiting enhanced machine learning techniques. The experimental results demonstrate that our method is robust to data perturbations and significantly outperforms the stateof- the-art de-anonymization techniques by up to 10× improvement. |
Publication Date: | 30-Oct-2017 |
Electronic Publication Date: | 30-Oct-2017 |
Citation: | Lee, W-H, Ji, S, Liu, C, Mittal, P, Lee, RB. (2017). Blind De-anonymization Attacks using Social Networks. 2017-January (1 - 4. doi:10.1145/3139550.3139562 |
DOI: | doi:10.1145/3139550.3139562 |
Pages: | 1 - 4 |
Type of Material: | Conference Article |
Journal/Proceeding Title: | Proceedings of the 2017 Workshop on Privacy in the Electronic Society, co-located with CCS 2017 |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.