To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1353w
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Law, Hei | - |
dc.contributor.author | Deng, Jia | - |
dc.date.accessioned | 2021-10-08T19:45:46Z | - |
dc.date.available | 2021-10-08T19:45:46Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.citation | Law, Hei, and Jia Deng. "CornerNet: Detecting Objects as Paired Keypoints." International Journal of Computer Vision 128, no. 3 (2020): pp. 642-656. doi:10.1007/s11263-019-01204-1 | en_US |
dc.identifier.issn | 0920-5691 | - |
dc.identifier.uri | https://arxiv.org/pdf/1808.01244.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1353w | - |
dc.description.abstract | We propose CornerNet, a new approach to object detection where we detect an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network. By detecting objects as paired keypoints, we eliminate the need for designing a set of anchor boxes commonly used in prior single-stage detectors. In addition to our novel formulation, we introduce corner pooling, a new type of pooling layer that helps the network better localize corners. Experiments show that CornerNet achieves a 42.2% AP on MS COCO, outperforming all existing one-stage detectors. | en_US |
dc.format.extent | 642 - 656 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | International Journal of Computer Vision | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | CornerNet: Detecting Objects as Paired Keypoints | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1007/s11263-019-01204-1 | - |
dc.identifier.eissn | 1573-1405 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DetectingObjectsPairedKeypointsJournal.pdf | 6.88 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.