Skip to main content

CornerNet: Detecting Objects as Paired Keypoints

Author(s): Law, Hei; Deng, Jia

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1353w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLaw, Hei-
dc.contributor.authorDeng, Jia-
dc.date.accessioned2021-10-08T19:45:46Z-
dc.date.available2021-10-08T19:45:46Z-
dc.date.issued2020en_US
dc.identifier.citationLaw, Hei, and Jia Deng. "CornerNet: Detecting Objects as Paired Keypoints." International Journal of Computer Vision 128, no. 3 (2020): pp. 642-656. doi:10.1007/s11263-019-01204-1en_US
dc.identifier.issn0920-5691-
dc.identifier.urihttps://arxiv.org/pdf/1808.01244.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1353w-
dc.description.abstractWe propose CornerNet, a new approach to object detection where we detect an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network. By detecting objects as paired keypoints, we eliminate the need for designing a set of anchor boxes commonly used in prior single-stage detectors. In addition to our novel formulation, we introduce corner pooling, a new type of pooling layer that helps the network better localize corners. Experiments show that CornerNet achieves a 42.2% AP on MS COCO, outperforming all existing one-stage detectors.en_US
dc.format.extent642 - 656en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Journal of Computer Visionen_US
dc.rightsAuthor's manuscripten_US
dc.titleCornerNet: Detecting Objects as Paired Keypointsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1007/s11263-019-01204-1-
dc.identifier.eissn1573-1405-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
DetectingObjectsPairedKeypointsJournal.pdf6.88 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.