Skip to main content

Sparse stochastic inference for latent Dirichlet allocation

Author(s): Mimno, David; Hoffman, Matthew D; Blei, David M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1352g
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMimno, David-
dc.contributor.authorHoffman, Matthew D-
dc.contributor.authorBlei, David M-
dc.date.accessioned2021-10-08T19:44:13Z-
dc.date.available2021-10-08T19:44:13Z-
dc.date.issued2012-06en_US
dc.identifier.citationMimno, David, Matthew D. Hoffman, David M. Blei. "Sparse stochastic inference for latent Dirichlet allocation." ICML'12: Proceedings of the 29th International Conference on International Conference on Machine Learning: pp. 1515–1522.en_US
dc.identifier.urihttps://dl.acm.org/doi/10.5555/3042573.3042767-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1352g-
dc.description.abstractWe present a hybrid algorithm for Bayesian topic models that combines the efficiency of sparse Gibbs sampling with the scalability of online stochastic inference. We used our algorithm to analyze a corpus of 1.2 million books (33 billion words) with thousands of topics. Our approach reduces the bias of variational inference and generalizes to many Bayesian hidden-variable models.en_US
dc.format.extent1515–1522en_US
dc.language.isoen_USen_US
dc.relation.ispartofICML'12: Proceedings of the 29th International Conference on Machine Learningen_US
dc.relation.ispartofseriesICML'12;-
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSparse stochastic inference for latent Dirichlet allocationen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
SparseStochasticInferenceLDA.pdf686 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.