Modeling heterogeneity in networks using polynomial chaos
Author(s): Rajendran, Karthikeyan; Tsoumanis, Andreas C.; Siettos, CI; Laing, CR; Kevrekidis, Yannis G.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1327d
Abstract: | © 2016 by Begell House, Inc. Using the dynamics of information propagation on a network as our illustrative example, we present and discuss a systematic approach to quantifying heterogeneity and its propagation that borrows established tools from uncertainty quantification, specifically, the use of polynomial chaos. The crucial assumption underlying this mathematical and computational “technology transfer” is that the evolving states of the nodes in a network quickly become correlated with the corresponding node identities: features of the nodes imparted by the network structure (e.g., the node degree, the node clustering coefficient). The node dynamics thus depend on heterogeneous (rather than uncertain) parameters, whose distribution over the network results from the network structure. Knowing these distributions allows one to obtain an efficient coarse-grained representation of the network state in terms of the expansion coefficients in suitable orthogonal polynomials. This representation is closely related to mathematical/computational tools for uncertainty quantification (the polynomial chaos approach and its associated numerical techniques). The polynomial chaos coefficients provide a set of good collective variables for the observation of dynamics on a network and, subsequently, for the implementation of reduced dynamic models of it. We demonstrate this idea by performing coarse-grained computations of the nonlinear dynamics of information propagation on our illustrative network model using the Equation-Free approach. |
Publication Date: | 1-Jan-2016 |
Citation: | Rajendran, K, Tsoumanis, AC, Siettos, CI, Laing, CR, Kevrekidis, YG. (2016). Modeling heterogeneity in networks using polynomial chaos. International Journal for Multiscale Computational Engineering, 14 (3), 291 - 302. doi:10.1615/IntJMultCompEng.2016015897 |
DOI: | doi:10.1615/IntJMultCompEng.2016015897 |
ISSN: | 1543-1649 |
Pages: | 291 - 302 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | International Journal for Multiscale Computational Engineering |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.