Skip to main content

Modeling heterogeneity in networks using polynomial chaos

Author(s): Rajendran, Karthikeyan; Tsoumanis, Andreas C.; Siettos, CI; Laing, CR; Kevrekidis, Yannis G.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1327d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajendran, Karthikeyan-
dc.contributor.authorTsoumanis, Andreas C.-
dc.contributor.authorSiettos, CI-
dc.contributor.authorLaing, CR-
dc.contributor.authorKevrekidis, Yannis G.-
dc.date.accessioned2021-10-08T19:58:39Z-
dc.date.available2021-10-08T19:58:39Z-
dc.date.issued2016-01-01en_US
dc.identifier.citationRajendran, K, Tsoumanis, AC, Siettos, CI, Laing, CR, Kevrekidis, YG. (2016). Modeling heterogeneity in networks using polynomial chaos. International Journal for Multiscale Computational Engineering, 14 (3), 291 - 302. doi:10.1615/IntJMultCompEng.2016015897en_US
dc.identifier.issn1543-1649-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1327d-
dc.description.abstract© 2016 by Begell House, Inc. Using the dynamics of information propagation on a network as our illustrative example, we present and discuss a systematic approach to quantifying heterogeneity and its propagation that borrows established tools from uncertainty quantification, specifically, the use of polynomial chaos. The crucial assumption underlying this mathematical and computational “technology transfer” is that the evolving states of the nodes in a network quickly become correlated with the corresponding node identities: features of the nodes imparted by the network structure (e.g., the node degree, the node clustering coefficient). The node dynamics thus depend on heterogeneous (rather than uncertain) parameters, whose distribution over the network results from the network structure. Knowing these distributions allows one to obtain an efficient coarse-grained representation of the network state in terms of the expansion coefficients in suitable orthogonal polynomials. This representation is closely related to mathematical/computational tools for uncertainty quantification (the polynomial chaos approach and its associated numerical techniques). The polynomial chaos coefficients provide a set of good collective variables for the observation of dynamics on a network and, subsequently, for the implementation of reduced dynamic models of it. We demonstrate this idea by performing coarse-grained computations of the nonlinear dynamics of information propagation on our illustrative network model using the Equation-Free approach.en_US
dc.format.extent291 - 302en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Journal for Multiscale Computational Engineeringen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleModeling heterogeneity in networks using polynomial chaosen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1615/IntJMultCompEng.2016015897-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Modeling_heterogeneity_networks_chaos.pdf247.58 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.