To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr13082
Abstract: | Modern experimental strategies often generate genome-scale measurements of human tissues or cell lines in various physiological states. Investigators often use these datasets individually to help elucidate molecular mechanisms of human diseases. Here we discuss approaches that effectively weight and integrate hundreds of heterogeneous datasets to gene-gene networks that focus on a specific process or disease. Diverse and systematic genome-scale measurements provide such approaches both a great deal of power and a number of challenges. We discuss some such challenges as well as methods to address them. We also raise important considerations for the assessment and evaluation of such approaches. When carefully applied, these integrative data-driven methods can make novel high-quality predictions that can transform our understanding of the molecular-basis of human disease. |
Publication Date: | 27-Dec-2012 |
Electronic Publication Date: | 27-Dec-2012 |
Citation: | Greene, CS, Troyanskaya, OG. (2012). Chapter 2: Data-Driven View of Disease Biology. PLoS Computational Biology, 8 (10.1371/journal.pcbi.1002816 |
DOI: | doi:10.1371/journal.pcbi.1002816 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | PLoS Computational Biology |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.