A kernel-based nonparametric test for anomaly detection over line networks
Author(s): Zou, Shaofeng; Liang, Yingbin; Poor, H Vincent
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr12x9c
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zou, Shaofeng | - |
dc.contributor.author | Liang, Yingbin | - |
dc.contributor.author | Poor, H Vincent | - |
dc.date.accessioned | 2020-02-19T21:59:46Z | - |
dc.date.available | 2020-02-19T21:59:46Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Zou, Shaofeng, Yingbin Liang, and H. Vincent Poor. "A kernel-based nonparametric test for anomaly detection over line networks." In 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), (2014). doi:10.1109/MLSP.2014.6958913 | en_US |
dc.identifier.issn | 1551-2541 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr12x9c | - |
dc.description.abstract | The nonparametric problem of detecting existence of an anomalous interval over a one-dimensional line network is studied. Nodes corresponding to an anomalous interval (if one exists) receive samples generated by a distribution q, which is different from the distribution p that generates samples for other nodes. If an anomalous interval does not exist, then all nodes receive samples generated by p. It is assumed that the distributions p and q are arbitrary, and are unknown. In order to detect whether an anomalous interval exists, a test is built based on mean embeddings of distributions into a reproducing kernel Hilbert space (RKHS) and the metric of maximum mean discrepancy (MMD). It is shown that as the network size n goes to infinity, if the minimum length of candidate anomalous intervals is larger than a threshold which has the order O(log n), the proposed test is asymptotically successful. An efficient algorithm to perform the test with substantial computational complexity reduction is proposed, and is shown to be asymptotically successful if the condition on the minimum length of candidate anomalous interval is satisfied. Numerical results are provided, which are consistent with the theoretical results. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | A kernel-based nonparametric test for anomaly detection over line networks | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.1109/MLSP.2014.6958913 | - |
dc.identifier.eissn | 2378-928X | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
OA_KernerlBasedNonparametricTestAnomalyDetectionLineNetworks.pdf | 207.01 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.