Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
Author(s): Zhou, Jian; Theesfeld, Chandra L; Yao, Kevin; Chen, Kathleen M; Wong, Aaron K; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr12k18
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhou, Jian | - |
dc.contributor.author | Theesfeld, Chandra L | - |
dc.contributor.author | Yao, Kevin | - |
dc.contributor.author | Chen, Kathleen M | - |
dc.contributor.author | Wong, Aaron K | - |
dc.contributor.author | Troyanskaya, Olga G | - |
dc.date.accessioned | 2021-10-08T19:48:32Z | - |
dc.date.available | 2021-10-08T19:48:32Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | Zhou, Jian, Chandra L. Theesfeld, Kevin Yao, Kathleen M. Chen, Aaron K. Wong, and Olga G. Troyanskaya. "Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk." Nature Genetics 50, no. 8 (2018): 1171-1179. doi:10.1038/s41588-018-0160-6 | en_US |
dc.identifier.issn | 1061-4036 | - |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094955/pdf/nihms965313.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr12k18 | - |
dc.description.abstract | Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk. | en_US |
dc.format.extent | 1171 - 1179 | en_US |
dc.language | eng | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Nature Genetics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1038/s41588-018-0160-6 | - |
dc.identifier.eissn | 1546-1718 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DeepLearningSequenceAbInitioPrediction.pdf | 908.06 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.