Skip to main content

Capillary and viscous fracturing during drainage in porous media

Author(s): Carrillo, Francisco J; Bourg, Ian C

To refer to this page use:
Abstract: Detailed understanding of the couplings between fluid flow and solid deformation in porous media is crucial for the development of novel technologies relating to a wide range of geological and biological processes. A particularly challenging phenomenon that emerges from these couplings is the transition from fluid invasion to fracturing during multiphase flow. Previous studies have shown that this transition is highly sensitive to fluid flow rate, capillarity, and the structural properties of the porous medium. However, a comprehensive characterization of the relevant fluid flow and material failure regimes does not exist. Here, we used our newly developed multiphase Darcy-Brinkman-Biot framework to examine the transition from drainage to material failure during viscously stable multiphase flow in soft porous media in a broad range of flow, wettability, and solid rheology conditions. We demonstrate the existence of three distinct material failure regimes controlled by nondimensional numbers that quantify the balance of viscous, capillary, and structural forces in the porous medium, in agreement with previous experiments and granular simulations. To the best of our knowledge, this study is the first to effectively decouple the effects of viscous and capillary forces on fracturing mechanics. Last, we examine the effects of consolidation or compaction on said dimensional numbers and the system’s propensity to fracture.
Publication Date: 15-Jun-2021
Electronic Publication Date: 2021
Citation: Carrillo, Francisco J, Bourg, Ian C. (Capillary and viscous fracturing during drainage in porous media. Physical Review E, 103 (6), 10.1103/physreve.103.063106
DOI: doi:10.1103/physreve.103.063106
ISSN: 2470-0045
EISSN: 2470-0053
Language: en
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review E
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.