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Capillary and viscous fracturing during drainage in porous media
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Detailed understanding of the couplings between fluid flow and solid deformation in porous media is crucial
for the development of novel technologies relating to a wide range of geological and biological processes. A
particularly challenging phenomenon that emerges from these couplings is the transition from fluid invasion to
fracturing during multiphase flow. Previous studies have shown that this transition is highly sensitive to fluid flow
rate, capillarity, and the structural properties of the porous medium. However, a comprehensive characterization
of the relevant fluid flow and material failure regimes does not exist. Here, we used our newly developed
multiphase Darcy-Brinkman-Biot framework to examine the transition from drainage to material failure during
viscously stable multiphase flow in soft porous media in a broad range of flow, wettability, and solid rheology
conditions. We demonstrate the existence of three distinct material failure regimes controlled by nondimensional
numbers that quantify the balance of viscous, capillary, and structural forces in the porous medium, in agreement
with previous experiments and granular simulations. To the best of our knowledge, this study is the first to
effectively decouple the effects of viscous and capillary forces on fracturing mechanics. Last, we examine the
effects of consolidation or compaction on said dimensional numbers and the system’s propensity to fracture.
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I. INTRODUCTION

Multiphase flow in deformable porous media is a ubiq-
uitous phenomenon in natural and engineered systems that
underlies key processes in water and energy resource engi-
neering and materials science, including membrane filtration,
soil wetting/drying, enhanced hydrocarbon recovery, and ge-
ologic carbon sequestration [1–3]. A key obstacle to more
accurate representations of this phenomenon is our limited
understanding of the transition from fluid invasion to flow-
induced fracturing, i.e., material failure caused by multiphase
flow. In large part, this limitation is caused by a lack of
computational approaches capable of representing multiphase
flow in fractured deformable porous media.

Previous work on multiphase flow within static porous
media is extensive and includes detailed examinations of the
influence of wettability, viscosity, and flow rate on flow in
unsaturated porous media at multiple scales. In particular,
existing studies have demonstrated how capillary forces give
rise to differences between drainage and imbibition [4]; how
the ratio of fluid viscosities controls the stability of the invad-
ing fluid front [5–7]; and how the magnitude of the capillary
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number delineates distinct flow regimes [8,9]. Each of the
aforementioned controls is highly dependent on the system of
interest. This complicates efforts to develop general relative
permeability and capillary pressure models that apply to most
systems [10–13].

Flow of a single fluid phase through deformable porous me-
dia also has been studied in depth. Numerical modeling stud-
ies are largely based on the work of Biot and Terzaghi [14,15]
and have been used to reproduce the behavior of arteries, bore-
holes, swelling clays, and gels [16–19]. Fundamental studies
have generated detailed information on the dynamics that
arise from fluid-solid couplings beyond the ideal poroelastic
regime, including fracturing and cracking of granular and
continuous systems [20–22]. In particular, these studies have
shown that the main parameters controlling the deformation of
a porous solid by single phase flow are the material softness
and the magnitude of the fluid-solid momentum transfer.

The study of multiphase flow in a deformable porous
medium is inherently more complex than the problems out-
lined above, as it requires simultaneous consideration of
capillarity, wetting dynamics, fluid rheology, and solid defor-
mation [23,24]. Deformation modes associated with material
failure (i.e., multiphase fracturing) are particularly challeng-
ing as they require simultaneous representation of multiphase
flow in fractures and in the surrounding porous matrix. Exist-
ing detailed examinations of this phenomenon have focused
exclusively on granular systems [25–27]. Notably, Holtzman
and Juanes [28,29] used experiments and discrete element
models to demonstrate that the transitions between capillary
fingering, viscous fingering, and fracturing during multiphase
flow in granular media reflect two nondimensional numbers:
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a fracturing number (ratio of fluid driving force to solid cohe-
sive force) and a modified capillary number (the ratio between
viscous and capillary pressure drops). Other discrete element
approaches have shown that fracturing is highly dependent on
the invading fluid’s capillary entry pressure [30,31].

To date, no study has yet examined how these conclusions
translate to non-granular systems or to systems exhibiting
viscously-stable drainage. Most studies have neglected this
flow regime in favor of the more-common viscously-stable
imbibition or viscously unstable drainage regimes. This obser-
vation is significant because naturally-occurring porous media
often are highly heterogeneous and are (or eventually become)
mixed-wet [32–35]. As such, all the associated flow regimes
need to be investigated if we are to gain an adequate and
complete understanding of multiphase flow in porous media.

In addition, to the best of our knowledge, no experimen-
tal or numerical investigation has simultaneously explored
and decoupled the effects that flow rate, wettability, and de-
formability have on fracturing mechanics and/or identified the
controlling parameters that relate all three properties within
a single phase diagram. This is partially due to the fact that
the associated parameter space is very large. Here, we explore
a portion of this space using simulations carried out with
our new multiphase Darcy-Brinkman-Biot (DBB) framework
[36] with the goal of gaining insight into the nondimensional
parameters that govern fracturing in deformable porous me-
dia. We also find that the fracturing dynamics predicted by
our continuum-scale framework are consistent with those ob-
served by the aforementioned granular studies. This suggests
that, for ductile materials such as those represented here, a
volume-averaged representation may be sufficient to capture
the onset and propagation of fractures at the continuum scale.

II. MODELING FRAMEWORK

Our investigation is carried out through the use of the Mul-
tiphase DBB modeling framework, a new and flexible model
used to simulate incompressible two-phase flow through and
around deformable porous media [36]. It consists of five
volume averaged fluid and solid conservation equations that
are coupled by spatially dependent momentum exchange and
capillary force terms. The model is composed of a fluid mass
conservation equation,

∂φ f

∂t
+ ∇ · U f = 0, (1)

a fluid saturation conservation equation,

∂φ f αw

∂t
+ ∇ · (αwU f ) + ∇ · (φ f αwαnU r ) = 0, (2)

a fluid momentum conservation equation,

∂ρ f U f

∂t
+ ∇ ·

(
ρ f

φ f
U f U f

)

= −φ f ∇p + φ f ρ f g + ∇ · S − φ f μk−1(U f − U s)

+ φ f Fc − φ f pc∇αw, (3)

a solid mass conservation equation,

∂φs

∂t
+ ∇ · (φsU s) = 0, (4)

FIG. 1. Conceptual representation of the Multiphase DBB
framework. The porous domain is shown in the lower half, the
free-fluid domain is shown in the upper half, the two immiscible
fluids (left and right) are shown in different shades of blue and are
separated by an interface (black), and φ f is the porosity. REV is
the “representative elementary volume” over which all equations are
averaged.

and a solid momentum conservation equation,

−∇ · σ = − φs∇p + φsρsg

+ φ f μk−1(U f − U s) − φ f Fc − φs pc∇αw. (5)

In the previous equations, φ f is the fluid volume frac-
tion, φs is the solid volume fraction, αw is the wetting fluid
saturation, αn is the nonwetting fluid saturation, U f is the
single-field fluid velocity, U s is the solid velocity, U r is the
relative velocity of the two immiscible fluids, p is the single-
field fluid pressure, S is the volume averaged fluid viscous
stress tensor, σ is the volume averaged solid stress tensor,
μk−1 is the drag coefficient (a function of permeability k
and single-field fluid viscosity μ), ρs is the solid density, g
is gravity, pc is the average capillary pressure in the porous
medium (equal to zero in the solid-free region), and Fc rep-
resents additional capillary terms. Here, “single-field” refers
to averaged variables that depend on the properties of both
fluids. Last, ρ f = αwρw + αnρn and μ = αwμw + μnρn are
the single-field fluid density and viscosity, respectively. The
closed form representations for U r, μk−1, and Fc can be
found in Appendix A.

As indicated in Fig. 1, the system of equations presented
above asymptotically approaches the Navier-Stokes multi-
phase volume-of-fluid [37] equations in solid free regions
(where φ f = 1, k is very large, and viscous drag is negligible)
and multiphase Biot theory in porous regions (where φ f < 1,
k is small, Re < 1, and drag dominates). This last point can be
demonstrated by adding Eqs. (3) and (5) together within the
porous domain, which results in the main governing equation
used in multiphase Biot theory [36,38,39]:

∇ · σ = ∇p − (φsρs + φ f ρ f )g + pc∇αw. (6)

A thorough discussion, derivation, and validation of this
model can be found in Carrillo and Bourg [36] and related
publications [18,40]. The two major limitation of the frame-
work highlighted in these previous studies are as follows.
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FIG. 2. Continuous transition from fluid imbibition to fracturing
in a Hele-Shaw cell. Experimental images (a–c) were taken from
Huang et al. [43] and numerically replicated using equivalent con-
ditions (D–F). Black lines represent the advancing saturation front.
Additional cases can be found in Ref. [36].

First, there needs to be a clear length-scale separation be-
tween the averaging volume, the sub-REV heterogeneities,
and the overall system [41]. This condition is sustained in
most situations involving fractured porous materials, where
fracture width is generally significantly larger than the pore
width within the porous matrix, with the possible exception
of microfractures. Second, closure of the system of equations
necessitates the use of parametric models describing the av-
erage behavior of the capillary pressure, permeability, and
solid rheology within porous domains. As such, the accuracy
of the overall model is inherently sensitive to the limitations
and assumptions of these parametric models. The complete
numerical implementation of the solver, its validations, and
the cases shown within this study can be found within the
open-source simulation package “hybridBiotInterFoam” [42].

III. NUMERICAL SIMULATIONS

A. Crossover from imbibition to fracturing in a Hele-Shaw cell

In addition to the derivation and extensive quantitative
validation of Eqs. (1)–(5), our recent work [36] included a
qualitative validation of the ability of the Multiphase DBB
model to predict the transition from invasion to fracturing
during multiphase flow. Briefly, this validation replicated ex-
periments by Huang et al. [43] involving the injection of
aqueous glycerin into dry sand at incremental flow rates
within a 30 by 30 by 2.5 cm Hele-Shaw cell. As shown in
Fig. 2, these experiments are inherently multiphysics, as fluid
flow is governed by Stokes flow in the fracture (aperture ∼cm)
and by multiphase Biot theory in the porous sand (pore width
∼100 μm).

As discussed in our previous work, the similarities between
our model and the experimental results are evident: As the
viscous forces imposed on the solid increase, so does the
system’s propensity to exhibit fracturing as the primary flow
mechanism (as opposed to imbibition). Minor microstructural
differences between our simulations and the experiments re-
flect the manner in which the implemented continuum-scale

rheology model approximates the solid’s granular nature. It
is clear, however, that both systems are controlled by the
balance between viscous forces and solid rheology at the scale
of interest [36]. As such, these simulations present an ideal
starting point for our investigation.

B. Creation of fracturing phase diagrams

Here, we use the same simulation methodology developed
in Ref. [36] and illustrated in Fig. 2 to gain insight into
the general nondimensional parameters that control the ob-
served transitional behavior between invasion and fracturing
in a plastic porous medium. To do so, we systematically
vary the solid’s porosity (φ f = 0.4 to 0.8), density-normalized
plastic yield stress (τyield = 1.5 to 24 m2/s2), capillary en-
try pressure (pc,0 = 100 to 50, 000 Pa), and permeability
(k = 1 × 10−13 and 5 × 10−9 m2) as well as the invading
fluid’s viscosity (μn = 0.5 to 50 cP) and injection rate (U f =
1 × 10−4 to 8 × 10−2 m/s). As in our previous work, the solid
was modeled as a Hershel-Bulkley-Quemada plastic [45,46],
permeability was modeled through the Kozeny-Carman re-
lation, and relative permeabilities and capillary pressures
where calculated through the van Genuchten model [13].
The Herschel-Bulkley-Quemada and Kozeny-Carman models
couple the solid’s rheology and absolute permeability to its
porosity, making the solid harder to deform as its compressed
and easier to flow through as it expands (and vice versa).
Porosity was initialized as a normally distributed field.

The resulting simulations were implemented in Open-
FOAM using a 500 by 500 grid with constant flow boundary
conditions at the inlet, zero-gradient flow conditions at the
outlet, and no-slip boundary conditions for solid displace-
ment at all boundaries. To allow for a proper comparison
between 2D simulations and 3D experiments in a Hele-Shaw
cell of thickness a, an additional drag term (12μa−2U f ) was
included in the fluid momentum equation [47]. Last, the
boundary effects of sliding friction and vertical confinement
on the solid were neglected, a reasonable simplification that
becomes significant at relatively low initial packing fractions
(φs ∼ 0.35) or high confining pressures [26]. If necessary,
these effects could potentially be included into the model by
including an additional drag term and a confining pressure into
Eq. (5) as done in Ref. [18].

Further details regarding the base implementation of the
model can be found in Ref. [36], the accompanying code
[42], and Appendix B. The only major differences relative
to our previous simulations are that we now include capillary
effects and represent viscously stable drainage as opposed to
imbibition (i.e., the injected glycerin is now nonwetting to the
porous medium). A representative sample of the more than
400 simulated cases is presented in the phase diagrams shown
in Fig. 3.

Overall, the results make intuitive sense. Figure 3(a) shows
that, ceteris-paribus, less permeable solids are more prone to
fracturing. This is due to the fact that, given a constant flow
rate, lower permeability solids experience greater drag forces
(see Darcy’s Law). As described in similar studies [28], our
results also show that solids with lower plastic yield stresses
fracture more readily, as their solid structure cannot withstand
the effects of relatively large viscous or capillary forces. The
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FIG. 3. Phase diagrams describing the effects of varying perme-
ability, plastic yield stress, fluid injection rate, and capillary entry
pressure on the transition from fluid drainage to fracturing. All cases
are at φs = 0.60 ± 0.05 and μn = 5 cP. The remaining parameters
are case-specific and can be found in each figure’s upper legend.
The areas separated by thin blue lines highlight and label the four
deformation regimes described in Sec. IV. The color scheme is the
same as in Fig. 2. Additional cases can be found in the Supplemental
Materials [44]

y-axis behavior of Fig. 3(b) further shows that systems with
higher entry pressures are more likely to fracture, i.e., the
capillary stresses are more likely to overwhelm the solid’s
yield stress, in agreement with grain scale simulations [30].
Finally, Fig. 3(b) also shows that higher injection rates lead to
more fracturing, as these induce a greater viscous drag on the
solid structure.

IV. CHARACTERIZATION OF FRACTURING
MECHANISMS

The deformation regimes observed in the previous ex-
periments can be delineated by two simple nondimensional
parameters that quantify the balance between viscous pressure

FIG. 4. Fluid invasion and fracturing in plastic porous media as
a function of the viscous fracturing number NvF and the capillary
fracturing number NcF. The four image insets are representative
samples of each fracturing regime, which are differentiated by the
fractured-to-saturated area ratio (R): Green triangles denote uni-
form invasion (R = 0), red diamonds denote the invasive fracturing
regimes (0 < R < 0.75), and blue circles denote noninvasive fractur-
ing (R > 0.75).

drop, solid softness, and capillary entry pressure.

NvF = �p

τyieldρs
= μUrin

kτyieldρs
ln

( rout

rin

)
, (7)

NcF = pc,0

τyieldρs
= 2γ

rporeτyieldρs
. (8)

Here, the viscous fracturing number (NvF) represents the
ratio between the viscous pressure drop and the solid’s struc-
tural forces. It embodies the question: Does fluid flow generate
sufficient friction to induce fracturing? As shown in Fig. 4, the
answer is no if NvF < 1 and yes if NvF > 1. At high capillary
numbers, this number is equivalent to the fracturing number
presented by Holtzman et al. [29] for granular solids and is
closely related to the “dimensionless time” used to analyze
fracture propagation in Huang et al. [48]. It also conforms
with the experimental finding by Zhou et al. [49] that fracture
initiation is only a function of the resulting fluid pressure drop,
irrespective of the injection rate or fluid viscosity used to cre-
ate it. Furthermore, it illustrates why increasing the injection
rate and decreasing the permeability have similar effects in
Fig. 3.

Complementarily, the capillary fracturing number (NcF)
represents the ratio between the capillary entry pressure and
the solid’s structural forces; it embodies the question: Does
multiphase flow generate sufficient capillary stresses to frac-
ture the solid? Figure 4 shows that when NcF < 1 drainage
is the preferential flow mechanism and when NcF > 1 frac-
turing becomes the dominant phenomenon. The definition of

063106-4



CAPILLARY AND VISCOUS FRACTURING DURING … PHYSICAL REVIEW E 103, 063106 (2021)

FIG. 5. Dynamic fracture formation mechanisms. Each row represents the time-dependent fracture formation process for each fracturing
type, where time advances from left to right. Here, the red-blue color scheme represents the log-normalized strain-rate magnitude specific to
each simulated case, fractures are shown in white and the advancing fluid-fluid interface is shown as a thin black line.

these fracturing numbers effectively decouples the effects that
viscous and capillary forces have on fracturing mechanics.
This is in contrast with previous studies, where fracturing was
characterized as a function of the capillary number (Ca ∼
NvF/NcF) and/or the sum of the two fracturing numbers (NF ∼
NcF + NcF) used here [28,29]. As described below, this subtle
change in perspective allows us to define distinct material fail-
ure regimes that reflect individual changes in the magnitude
of capillary and viscous forces, as opposed to their sum or
relative magnitudes.

The previous analysis yields the rudimentary conclusion
that fracturing should occur if either of the fracturing numbers
is greater than unity, as confirmed by our simulations. How-
ever, our simulations and choice of fracturing numbers further
demonstrate the existence of three distinct fracturing regimes
(Figs. 3 and 4). The first regime, referred here as noninvasive
fracturing (NvF > 1 and NcF > 1), is characterized by fractur-
ing of the porous solid with minimal fluid invasion, where
fractures precede any invasion front. In the second regime,
referred to here as invasive viscous fracturing (NvF > 1 and
NcF < 1), only the viscous stresses are sufficiently large to
fracture the solid. This leads to the formation of relatively
wide fractures enveloped and preceded by a nonuniform in-
vasion front. Finally, in the third regime, referred to here as
invasive capillary fracturing (NvF < 1 and NcF > 1), only the
capillary stresses are sufficiently large to fracture the solid.
Given a constant injection rate, this leads to the formation
of fractures preceded by an invasion front, as in the invasive
viscous fracturing regime, but with a more uniform saturation
front (due to lower viscous stresses) and less solid compaction
(hence, narrower fractures). We note that the crossover be-
tween each of the four regimes is continuous, meaning that
systems with NvF or NcF ∼ 1 can share elements of neighbor-
ing regimes.

Although NvF and NcF are fairly intuitive numbers, their
impacts on fracture propagation mechanisms are not. For this

reason, we also studied the dynamics of fracture nucleation
and growth and the evolution of the solid’s strain for all
three fracturing regimes. As seen in Fig. 5, fracturing in
the two invasive fracturing regimes is characterized by the
initial formation of non-flow-bearing failure zones (hereafter
referred to as cracks), which function as nucleation sites for
the propagation of flow-bearing fractures, in agreement with
conventional theory [27,50]. These cracks are formed by the
simultaneous movement of large contiguous sections of the
porous medium in different directions, a process induced by
uniform fluid invasion into the porous medium. However, the
similarities between both invasive fracturing zones end here.
In the invasive viscous fracturing regime, fractures quickly
become the dominant deformation mechanism, localizing the
majority of the stresses and solid compaction around the
advancing fracture tip. Conversely, in the invasive capillary
fracturing regime, fluid-invasion continues to serve as the
main flow mechanism and source of deformation, where frac-
tures and cracks are slowly expanded due to the more evenly
distributed capillarity-induced stresses localized at the ad-
vancing invasion front. Finally, noninvasive fracturing follows
a different process, where there is little-to-no crack formation
and fracture propagation is the main source of deformation
and flow. Here, the co-advancing fracture and saturation fronts
uniformly compress the solid around and in front of them
until this deformation reaches the outer boundary of the sim-
ulated system [see the “jet” like-structures at fracture tips in
Fig. 5(c)]. Pressure profiles and videos that further showcase
these behaviours can be found in Appendix C and the Supple-
mental Material [44], respectively.

V. INFLUENCE OF LOCALIZED
AND UNIFORM DEFORMATION

So far we have explored how independently changing k, pc,
and τyield (among others) can affect the fracturing of plastic
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FIG. 6. Influence of the φ f -dependence of pc on fluid invasion
(red and blue) and fracturing patterns (white) in the invasive capillary
fracturing regime. Here, n represents the sensitivity parameter in the
Leverett J-function analog presented above.

materials. However, our results also have implications for
situations in which these variables are all varied simultane-
ously, such as during the consolidation or compaction of soils,
sediments, or viscoplastic sedimentary rocks (i.e., mudstones
or clay-shales) [51,52]. In such situations, with increasing
compaction, k−1, pc, and τyield should all increase, although
at different rates. As such, we now study the effects of local
and uniform deformation on the outlined fracturing regimes.

A. Localized deformation

The simulations presented above were carried out using the
simplifying assumption that pc is invariant with φ f (whereas k
and τyield are not). To evaluate the impact of this simplification
on the results shown in Figs. 3 and 4, we carried out additional
simulations for all four regimes with a deformation-dependent
capillary entry pressure based on a simplified form of the
Leverett J-function where pc,0 = p∗

c,0(φs/φ
avg
s )n, p∗

c,0 is the
capillary pressure at φs = φ

avg
s , and n > 0 is a sensitivity

parameter [53,54]. The results show that nonzero values of n
promote the creation of finger-like instabilities and the nucle-
ation of cracks at the fluid invasion front, particularly in the
invasive capillary fracturing regime. Simulation predictions
with different n values are shown in Fig. 6 in the invasive
capillary fracturing regime and in the Supplemental Material
[44] in other regimes.

Despite the additional complexity of the resulting fluid
invasion and fracturing patterns, results with n > 0 conform
to the overall phase diagram presented in Fig. 4. The results
at n = 0 are therefore highlighted in the previous sections due
to the greater simplicity of their fluid and solid distribution
patterns.

B. Uniform deformation

Having verified that the applicability of the fracturing
numbers holds for systems were k, τyield, and pc all vary
with φ f , we now examine the effects of uniform com-
paction on said numbers. A direct analysis using the widely
used porosity-parameter relationships implemented above
(the Kozeny-Carman relation for k, Leverett J-Function for pc,
and Quemada model for τyield [45,46,53]) yields the following
fracturing number porosity-dependence:

NvF ∝ (1 − φ f )2−D(1 − φ f ,min/φ f )

φ2
f

, (9)

NcF ∝ (1 − φ f )2−D(1 − φ f ,min/φ f ), (10)

FIG. 7. Relative magnitude of the fracturing numbers NvF (a)
and NcF (b), plotted as a function of porosity. Results are shown for
different values of the fractal parameter D and the minimum porosity
parameter φ f ,min in the rheology model. Green, orange, blue, and red
curves represent increasing values of D if φ f ,min = 0.3; increasingly
thicker curves represent increasing values of φ f ,min if D = 2.5.

where D is a rheological parameter based on the solid’s fractal
dimension (common values range for 1.7–2.9 for different
clayey sediments [45]) and φ f ,min is the minimum achievable
porosity (i.e the maximum possible degree of compaction).
Through these relations, we can see that uniform compaction
(or expansion) can have a highly non-linear effect on fractur-
ing. Equations (9) and (10) indicate that whereas NcF tends
to consistently decrease with increasing compaction, NvF is
considerably more susceptible to changes in φ f and exhibits
several changes in the sign of its first derivative when D > 2,
nonintuitively suggesting that fracturing can be either induced
or suppressed through uniform compression. Plots of NvF and
NcF as a function of solid fraction are reported in Fig. 7.

VI. CONCLUSIONS

In this article, we used the multiphase DBB framework
to create a phase diagram based on two nondimensional
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parameters that categorize the crossover between viscously
stable fluid drainage and fracturing as a function of wetta-
bility, solid deformability, and hydrodynamics. To the best
of our knowledge, our results are the first to simultaneously
relate and vary all three of these properties to characterize
multiphase flow in viscoplastic porous media. In agreement
with previous studies, we observe that fracturing occurs if the
viscous and/or capillary stresses are sufficient to overcome
the solid’s structural forces. Thus, when it comes to systems
with multiple fluids, it is necessary to consider the effects
of surface tension, wettability, and pore size on the fluids’
propensity to fracture or invade the permeable solid. Fur-
thermore, we found that the two nondimensional fracturing
numbers described above delineate the existence of three frac-
turing regimes with distinct fracture propagation mechanisms.
Last, we examined how uniform compression or expansion
affect said nondimensional numbers and a system’s propensity
to fracture.
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APPENDIX A: DESCRIPTION OF MULTISCALE
PARAMETERS

The closed-form expressions of the multiscale parameters
μk−1, Fc, and U r now follow. These are defined differently
in porous (φ f < 1) and solid-free (φ f = 1) regions. A full
derivation and discussion of these parameters can be found
in Refs. [36,40].

μk−1 =
{

0 φ f = 1,

k−1
0

( kr,w

μw
+ kr,n

μn

)−1
φ f < 1,

(A1)

Fc =

⎧⎪⎨
⎪⎩

− γ

φ f
∇ · (nw,n)∇αw φ f = 1,

M−1(Mwαn − Mnαw )

∗(∇pc + (ρw − ρn)g)
φ f < 1,

(A2)

nw,n =
{ ∇αw

|∇αw | φ f = 1,

cos(θ )nwall + sin(θ )twall atζ ,
(A3)

U r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cα max (|U f |) ∇αw

|∇αw | , φ f = 1,

φ f
−1

⎡
⎢⎢⎢⎢⎢⎣

−(Mw

αw
− Mn

αn

)∇p

+(
ρwMw

αw
− ρnMn

αn

)
g

+(Mwαn
αw

+ Mnαw

αn

)∇pc

−(Mw

αw
− Mn

αn

)
pc∇αw

⎤
⎥⎥⎥⎥⎥⎦ φ f < 1,

(A4)

where Cα is an interface compression parameter (traditionally
set to values between 1 and 4 in the volume-of-fluid method),
ζ is the interface between the porous and solid-free regions,
k0 is the absolute permeability, kr,i and Mi = k0ki,r/μi are
the relative permeability and mobility of each fluid, and M =

Mw + Mn. Last, θ is the imposed contact angle at the porous
wall, and nwall and twall are the normal and tangential direc-
tions relative to said wall, respectively.

APPENDIX B: GENERAL METHODOLOGY FOR THE
FRACTURING SIMULATIONS SHOWN IN FIG. 2

As shown in our previous work [36], the simulations shown
in Fig. 2 were implemented as follows: Numerical parame-
ters were set to the known properties of aqueous glycerin,
air, and sand (ρgly = 1250 kg/m3, μgly = 5 to 176 cP,
ρair = 1 kg/m3, μair = 0.017 cP, ρs = 2650 kg/m3), the air-
glycerin surface tension γ = 0.063 kg/s2, and the sand grain
radius rs = 100 μm. To mimic the existence of sub-REV
scale heterogeneity, the solid fraction was initialized as a
normally distributed field φs = 0.64 ± 0.05. To account for
the nonreversible and compressive nature of the experiments,
the deformable solid was modeled as a Hershel-Bulkley-
Quemada plastic with a density-normalized yield stress of
τyield = 16.02 m2/s2 [36,55,56]. Permeability was modeled as
a function of porosity through the Kozeny-Carman relation:
k = k0φ

3
f φ

−2
s with k0 = 6.7 × 10−12 m2. Relative permeabil-

ities were calculated through the Van Genuchten model [13]
with wettability parameter m = 0.99; capillary effects were
assumed negligible.

APPENDIX C: FRACTURING PRESSURE PROFILES

Figure 8 shows representative normalized pressure profiles
for all four deformation regimes. Note how the two invasive
fracturing regimes exhibit a combination of the characteris-
tic behavior shown in the uniform invasion and noninvasive
fracturing pressure curves. Abrupt pressure drops and gradual
pressure decreases correspond, respectively, to the crack nu-
cleation and fracture propagation phenomena discussed in the
text.

FIG. 8. Representative normalized pressure profiles for all four
fracturing regimes. All pressure profiles where normalized by the
maximum pressure achieved by each simulation and by the time it
took for the fluid-fluid interface to reach the outer boundary in each
simulation.
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APPENDIX D: SOLID RHEOLOGY MODELS

1. Hershel-Bulkley plasticity

A Bingham plastic is a material that deforms only once
it is under a sufficiently high stress. After this yield stress
is reached, it will deform viscously and irreversibly. The
Herschel-Bulkley rheological model combines the properties
of a Bingham plastic with a power-law viscosity model, such
that said plastic can be shear thinning or shear thickening dur-
ing deformation. In OpenFOAM this model is implemented as
follows:

σ = μeff
s

( ∇U s + (∇U s)T − 2
3∇ · (U sI)

)
, (D1)

where μeff
s is the effective solid plastic viscosity, which is then

modeled through a power-law expression:

μeff
s = min

(
μ0

s ,
τyield

η
+ μsη

n−1

)
, (D2)

where μ0
s is the limiting viscosity (set to a large value), τyield

is the yield stress, μs is the viscosity of the solid once the yield
stress is overcome, n is the flow index (n = 1 for constant
viscosity), and η is the shear rate.

2. Quemada rheology model

The Quemada rheology model [45,46] is a simple model
that accounts for the fact that the average yield stress and
effective viscosity of a plastic are functions of the solid frac-
tion. These two quantities are large at high solid fractions and
small at low solid fractions, as described by the following
relations:

τyield = τ0

( (
φs/φ

max
s

)
(
1 − φs/φmax

s

))D

, (D3)

μs = μ0(
1 − φs

φmax
s

)2 , (D4)

here, φmax
s is the maximum solid fraction possible (per-

fect incompressible packing), τ0 is the yield stress at φs =
φmax

s /2, μ0 is the viscosity of the fluid where the solid would
be suspended at low solid fractions (high fluid fractions),
and D is a scaling parameter based on the solid’s fractal
dimension.

APPENDIX E: NOMENCLATURE

n Leverett J-function sensitivity parameter
αn Saturation of the nonwetting phase
αw Saturation of the wetting phase
σ Elastic or plastic solid stress tensor (Pa)
Fc Surface tension force (Pam−1)
g Gravity vector (ms−2)

nwall Normal vector to the porous surface
S Single-field fluid viscous stress tensor (Pa)

twall Tangent vector to the porous surface
Uf Single-field fluid velocity (ms−1)
Ur Relative fluid velocity (ms−1)
Us Solid velocity (ms−1)
γ Fluid-fluid interfacial tension (Pam)
μi Viscosity of phase i (Pas)
φ f Porosity field
φs Solid fraction field
ρ f Single-field fluid density (kgm−3)
ρi Density of phase i (kgm−3)
τ0 Plastic yield stress (Pa)
θ Surface contact angle

Cα Parameter for the compression velocity model
D Solid Fractal Rheological Parameter
k Apparent permeability (m2)
k0 Absolute permeability (m2)
kr,i Relative permeability with respect to phase i
M Total mobility (kg−1m3s−1)
Mi Mobility of phase i (kg−1m3s−1)
p Single-field fluid pressure (Pa)
pc Capillary pressure (Pa)

pc,0 Entry capillary pressure (Pa)
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