Skip to main content

Spectral Filtering for General Linear Dynamical Systems

Author(s): Hazan, Elad; Lee, Holden; Singh, Karan; Zhang, Cyril; Zhang, Yi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11p0n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHazan, Elad-
dc.contributor.authorLee, Holden-
dc.contributor.authorSingh, Karan-
dc.contributor.authorZhang, Cyril-
dc.contributor.authorZhang, Yi-
dc.date.accessioned2021-10-08T19:50:04Z-
dc.date.available2021-10-08T19:50:04Z-
dc.date.issued2018en_US
dc.identifier.citationHazan, Elad, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. "Spectral Filtering for General Linear Dynamical Systems." Advances in Neural Information Processing Systems 31 (2018).en_US
dc.identifier.issn1049-5258-
dc.identifier.urihttps://papers.neurips.cc/paper/2018/file/d6288499d0083cc34e60a077b7c4b3e1-Paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11p0n-
dc.description.abstractWe give a polynomial-time algorithm for learning latent-state linear dynamical systems without system identification, and without assumptions on the spectral radius of the system's transition matrix. The algorithm extends the recently introduced technique of spectral filtering, previously applied only to systems with a symmetric transition matrix, using a novel convex relaxation to allow for the efficient identification of phases.en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in Neural Information Processing Systemsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSpectral Filtering for General Linear Dynamical Systemsen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
SpectralFiltering.pdf563.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.