Skip to main content

Expandable factor analysis

Author(s): Srivastava, Sanvesh; Engelhardt, Barbara E; Dunson, David B

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1184r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSrivastava, Sanvesh-
dc.contributor.authorEngelhardt, Barbara E-
dc.contributor.authorDunson, David B-
dc.date.accessioned2021-10-08T19:49:06Z-
dc.date.available2021-10-08T19:49:06Z-
dc.date.issued2017en_US
dc.identifier.citationSrivastava, Sanvesh, Barbara E. Engelhardt, and David B. Dunson. "Expandable factor analysis." Biometrika 104, no. 3 (2017): 649-663. doi:10.1093/biomet/asx030en_US
dc.identifier.issn0006-3444-
dc.identifier.urihttps://arxiv.org/pdf/1407.1158v3.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1184r-
dc.description.abstractBayesian sparse factor models have proven useful for characterizing dependence in multivariate data, but scaling computation to large numbers of samples and dimensions is problematic. We propose expandable factor analysis for scalable inference in factor models when the number of factors is unknown. The method relies on a continuous shrinkage prior for efficient maximum a posteriori estimation of a low-rank and sparse loadings matrix. The structure of the prior leads to an estimation algorithm that accommodates uncertainty in the number of factors. We propose an information criterion to select the hyperparameters of the prior. Expandable factor analysis has better false discovery rates and true positive rates than its competitors across diverse simulation settings. We apply the proposed approach to a gene expression study of ageing in mice, demonstrating superior results relative to four competing methods.en_US
dc.format.extent649 - 663en_US
dc.language.isoen_USen_US
dc.relation.ispartofBiometrikaen_US
dc.rightsAuthor's manuscripten_US
dc.titleExpandable factor analysisen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1093/biomet/asx030-
dc.identifier.eissn1464-3510-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
ExpandableFactorAnalysis.pdf538.96 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.