Skip to main content

Computational approaches to fMRI analysis

Author(s): Cohen, Jonathan D.; Daw, Nathaniel; Engelhardt, Barbara; Hasson, U; Li, Kai; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr10m46
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCohen, Jonathan D.-
dc.contributor.authorDaw, Nathaniel-
dc.contributor.authorEngelhardt, Barbara-
dc.contributor.authorHasson, U-
dc.contributor.authorLi, Kai-
dc.contributor.authorNiv, Yael-
dc.contributor.authorNorman, Kenneth A-
dc.contributor.authorPillow, Jonathan-
dc.contributor.authorRamadge, Peter J-
dc.contributor.authorTurk-Browne, Nicholas B.-
dc.contributor.authorWillke, TL-
dc.date.accessioned2018-07-20T15:09:22Z-
dc.date.available2018-07-20T15:09:22Z-
dc.date.issued2017-01-12en_US
dc.identifier.citationCohen, JD, Daw, N, Engelhardt, B, Hasson, U, Li, K, Niv, Y, Norman, KA, Pillow, J, Ramadge, PJ, Turk-Browne, NB, Willke, TL. (2017). Computational approaches to fMRI analysis. Nature Neuroscience, 20 (304 - 313. doi:10.1038/nn.4499en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr10m46-
dc.description.abstractAnalysis methods in cognitive neuroscience have not always matched the richness of fMRI data. Early methods focused on estimating neural activity within individual voxels or regions, averaged over trials or blocks and modeled separately in each participant. This approach mostly neglected the distributed nature of neural representations over voxels, the continuous dynamics of neural activity during tasks, the statistical benefits of performing joint inference over multiple participants and the value of using predictive models to constrain analysis. Several recent exploratory and theory-driven methods have begun to pursue these opportunities. These methods highlight the importance of computational techniques in fMRI analysis, especially machine learning, algorithmic optimization and parallel computing. Adoption of these techniques is enabling a new generation of experiments and analyses that could transform our understanding of some of the most complex - and distinctly human - signals in the brain: acts of cognition such as thoughts, intentions and memories.en_US
dc.format.extent304 - 313en_US
dc.language.isoen_USen_US
dc.relation.ispartofNature Neuroscienceen_US
dc.rightsAuthor's manuscripten_US
dc.titleComputational approaches to fMRI analysisen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/nn.4499-
dc.date.eissued2017-2-23en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Computational approaches to fMRI analysis.pdf1.81 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.