Skip to main content

Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films

Author(s): Miller, EM; Kroupa, DM; Zhang, J; Schulz, P; Marshall, AR; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr10k20
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiller, EM-
dc.contributor.authorKroupa, DM-
dc.contributor.authorZhang, J-
dc.contributor.authorSchulz, P-
dc.contributor.authorMarshall, AR-
dc.contributor.authorKahn, Antoine-
dc.contributor.authorLany, S-
dc.contributor.authorLuther, JM-
dc.contributor.authorBeard, MC-
dc.contributor.authorPerkins, CL-
dc.contributor.authorVan De Lagemaat, J-
dc.date.accessioned2021-10-08T20:16:31Z-
dc.date.available2021-10-08T20:16:31Z-
dc.date.issued2016en_US
dc.identifier.citationMiller, EM, Kroupa, DM, Zhang, J, Schulz, P, Marshall, AR, Kahn, A, Lany, S, Luther, JM, Beard, MC, Perkins, CL, Van De Lagemaat, J. (2016). Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. ACS Nano, 10 (3302 - 3311. doi:10.1021/acsnano.5b06833en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr10k20-
dc.description.abstractWe use a high signal-to-noise X-ray photoelectron spectrum of bulk PbS, GW calculations, and a model assuming parabolic bands to unravel the various X-ray and ultraviolet photoelectron spectral features of bulk PbS as well as determine how to best analyze the valence band region of PbS quantum dot (QD) films. X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) are commonly used to probe the difference between the Fermi level and valence band maximum (VBM) for crystalline and thin-film semiconductors. However, we find that when the standard XPS/UPS analysis is used for PbS, the results are often unrealistic due to the low density of states at the VBM. Instead, a parabolic band model is used to determine the VBM for the PbS QD films, which is based on the bulk PbS experimental spectrum and bulk GW calculations. Our analysis highlights the breakdown of the Brillioun zone representation of the band diagram for large band gap, highly quantum confined PbS QDs. We have also determined that in 1,2-ethanedithiol-treated PbS QD films the Fermi level position is dependent on the QD size; specifically, the smallest band gap QD films have the Fermi level near the conduction band minimum and the Fermi level moves away from the conduction band for larger band gap PbS QD films. This change in the Fermi level within the QD band gap could be due to changes in the Pb:S ratio. In addition, we use inverse photoelectron spectroscopy to measure the conduction band region, which has similar challenges in the analysis of PbS QD films due to a low density of states near the conduction band minimum.en_US
dc.format.extent3302 - 3311en_US
dc.language.isoen_USen_US
dc.relation.ispartofACS Nanoen_US
dc.rightsAuthor's manuscripten_US
dc.titleRevisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Filmsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1021/acsnano.5b06833-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.pdf1.87 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.