Skip to main content

Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

Author(s): Allen-Zhu, Zeyuan; Hazan, Elad; Hu, Wei; Li, Yuanzhi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1055p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllen-Zhu, Zeyuan-
dc.contributor.authorHazan, Elad-
dc.contributor.authorHu, Wei-
dc.contributor.authorLi, Yuanzhi-
dc.date.accessioned2021-10-08T19:49:26Z-
dc.date.available2021-10-08T19:49:26Z-
dc.date.issued2017en_US
dc.identifier.citationAllen-Zhu, Zeyuan, Elad Hazan, Wei Hu, and Yuanzhi Li. "Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls." Advances in Neural Information Processing Systems 30 (2017).en_US
dc.identifier.issn1049-5258-
dc.identifier.urihttps://papers.neurips.cc/paper/2017/file/8b8388180314a337c9aa3c5aa8e2f37a-Paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1055p-
dc.description.abstractWe propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Alternatively, our algorithm can be viewed as a rank-k restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most k. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in Neural Information Processing Systemsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleLinear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Ballsen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
LinearConvergenceAlgorithm.pdf514.67 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.