Four Key Steps Control Glycolytic Flux in Mammalian Cells.
Author(s): Tanner, Lukas Bahati; Goglia, Alexander G; Wei, Monica H; Sehgal, Talen; Parsons, Lance R; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1zr66
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tanner, Lukas Bahati | - |
dc.contributor.author | Goglia, Alexander G | - |
dc.contributor.author | Wei, Monica H | - |
dc.contributor.author | Sehgal, Talen | - |
dc.contributor.author | Parsons, Lance R | - |
dc.contributor.author | Park, Junyoung O | - |
dc.contributor.author | White, Eileen | - |
dc.contributor.author | Toettcher, Jared E | - |
dc.contributor.author | Rabinowitz, Joshua D | - |
dc.date.accessioned | 2020-10-30T18:50:19Z | - |
dc.date.available | 2020-10-30T18:50:19Z | - |
dc.date.issued | 2018-06-27 | en_US |
dc.identifier.citation | Tanner, Lukas Bahati, Goglia, Alexander G, Wei, Monica H, Sehgal, Talen, Parsons, Lance R, Park, Junyoung O, White, Eileen, Toettcher, Jared E, Rabinowitz, Joshua D. (2018). Four Key Steps Control Glycolytic Flux in Mammalian Cells.. Cell systems, 7 (1), 49 - 62.e8. doi:10.1016/j.cels.2018.06.003 | en_US |
dc.identifier.issn | 2405-4712 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1zr66 | - |
dc.description.abstract | Altered glycolysis is a hallmark of diseases including diabetes and cancer. Despite intensive study of the contributions of individual glycolytic enzymes, systems-level analyses of flux control through glycolysis remain limited. Here, we overexpress in two mammalian cell lines the individual enzymes catalyzing each of the 12 steps linking extracellular glucose to excreted lactate, and find substantial flux control at four steps: glucose import, hexokinase, phosphofructokinase, and lactate export (and not at any steps of lower glycolysis). The four fluxcontrolling steps are specifically up-regulated by the Ras oncogene: optogenetic Ras activation rapidly induces the transcription of isozymes catalyzing these four steps and enhances glycolysis. At least one isozyme catalyzing each of these four steps is consistently elevated in human tumors. Thus, in the studied contexts, flux control in glycolysis is concentrated in four key enzymatic steps. Up-regulation of these steps in tumors likely underlies the Warburg effect. | en_US |
dc.format.extent | 49 - 62 | en_US |
dc.language | eng | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Cell Systems | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Four Key Steps Control Glycolytic Flux in Mammalian Cells. | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.cels.2018.06.003 | - |
dc.date.eissued | 2018-06-27 | en_US |
dc.identifier.eissn | 2405-4720 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Four_key_steps_glycolytic_cells.pdf | 1.22 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.