Skip to main content

Directionally Interacting Spheres and Rods Form Ordered Phases

Author(s): Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; Panagiotopoulos, Athanassios Z.; Kumar, Sanat K.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xz0n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Wenyan-
dc.contributor.authorMahynski, Nathan A.-
dc.contributor.authorGang, Oleg-
dc.contributor.authorPanagiotopoulos, Athanassios Z.-
dc.contributor.authorKumar, Sanat K.-
dc.date.accessioned2020-01-28T18:23:16Z-
dc.date.available2020-01-28T18:23:16Z-
dc.date.issued2017-05-23en_US
dc.identifier.citationLiu, Wenyan, Mahynski, Nathan A., Gang, Oleg, Panagiotopoulos, Athanassios Z., Kumar, Sanat K. (2017). Directionally Interacting Spheres and Rods Form Ordered Phases. ACS Nano, 11 (5), 4950 - 4959. doi:10.1021/acsnano.7b01592en_US
dc.identifier.issn1936-0851-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xz0n-
dc.description.abstractThe structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, however, when mixed, spheres and rods have demonstrated only limited structural organization to date. Here, we show using experiments and theory that the introduction of directional attractions between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. We, therefore, propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.en_US
dc.format.extent4950 - 4959en_US
dc.language.isoen_USen_US
dc.relation.ispartofACS Nanoen_US
dc.rightsAuthor's manuscripten_US
dc.titleDirectionally Interacting Spheres and Rods Form Ordered Phasesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1021/acsnano.7b01592-
dc.date.eissued2017-05-10en_US
dc.identifier.eissn1936-086X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Directionally Interacting Spheres and Rods Form Ordered Phases.pdf11.96 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.