Skip to main content

Wigner phase-space distribution as a wave function

Author(s): Bondar, Denys I.; Cabrera, Renan; Zhdanov, Dmitry V.; Rabitz, Herschel A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xv5k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBondar, Denys I.-
dc.contributor.authorCabrera, Renan-
dc.contributor.authorZhdanov, Dmitry V.-
dc.contributor.authorRabitz, Herschel A.-
dc.date.accessioned2020-10-30T18:35:50Z-
dc.date.available2020-10-30T18:35:50Z-
dc.date.issued2013-11-11en_US
dc.identifier.citationBondar, Denys I., Cabrera, Renan, Zhdanov, Dmitry V., Rabitz, Herschel A. (2013). Wigner phase-space distribution as a wave function. PHYSICAL REVIEW A, 88 (10.1103/PhysRevA.88.052108en_US
dc.identifier.issn1050-2947-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xv5k-
dc.description.abstractWe demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function’s negativity.en_US
dc.format.extent052108-1 - 052108-6en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Aen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleWigner phase-space distribution as a wave functionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevA.88.052108-
dc.identifier.eissn1094-1622-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevA.88.052108.pdf637.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.