Effect of imperfections on the hyperuniformity of many-body systems
Author(s): Kim, Jaeuk; Torquato, Salvatore
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xj70
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jaeuk | - |
dc.contributor.author | Torquato, Salvatore | - |
dc.date.accessioned | 2020-10-30T18:29:14Z | - |
dc.date.available | 2020-10-30T18:29:14Z | - |
dc.date.issued | 2018-02-12 | en_US |
dc.identifier.citation | Kim, J, Torquato, S. (2018). Effect of imperfections on the hyperuniformity of many-body systems. Physical Review B, 97 (5), 10.1103/PhysRevB.97.054105 | en_US |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xj70 | - |
dc.description.abstract | © 2018 American Physical Society. A hyperuniform many-body system is characterized by a structure factor Sk that vanishes in the small-wave-number limit or equivalently by a local number variance σN2R associated with a spherical window of radius R that grows more slowly than Rd in the large-R limit. Thus, the hyperuniformity implies anomalous suppression of long-wavelength density fluctuations relative to those in typical disordered systems, i.e., σN2R∼Rd as R→∞. Hyperuniform systems include perfect crystals, quasicrystals, and special disordered systems. Disordered hyperuniform systems are amorphous states of matter that lie between a liquid and crystal [S. Torquato et al., Phys. Rev. X 5, 021020 (2015)2160-330810.1103/PhysRevX.5.021020], and have been the subject of many recent investigations due to their novel properties. In the same way that there is no perfect crystal in practice due to the inevitable presence of imperfections, such as vacancies and dislocations, there is no "perfect" hyperuniform system, whether it is ordered or not. Thus, it is practically and theoretically important to quantitatively understand the extent to which imperfections introduced in a perfectly hyperuniform system can degrade or destroy its hyperuniformity and corresponding physical properties. This paper begins such a program by deriving explicit formulas for Sk in the small-wave-number regime for three types of imperfections: (1) uncorrelated point defects, including vacancies and interstitials, (2) stochastic particle displacements, and (3) thermal excitations in the classical harmonic regime. We demonstrate that our results are in excellent agreement with numerical simulations. We find that "uncorrelated" vacancies or interstitials destroy hyperuniformity in proportion to the defect concentration p. We show that "uncorrelated" stochastic displacements in perfect lattices can never destroy the hyperuniformity but it can be degraded such that the perturbed lattices fall into class III hyperuniform systems, where σN2R∼Rd-α as R→∞ and 0<α<1. By contrast, we demonstrate that certain "correlated" displacements can make systems nonhyperuniform. For a perfect (ground-state) crystal at zero temperature, increase in temperature T introduces such correlated displacements resulting from thermal excitations, and thus the thermalized crystal becomes nonhyperuniform, even at an arbitrarily low temperature. It is noteworthy that imperfections in disordered hyperuniform systems can be unambiguously detected. Our work provides the theoretical underpinnings to systematically study the effect of imperfections on the physical properties of hyperuniform materials. | en_US |
dc.format.extent | 054105-1 - 054105-18 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Physical Review B | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Effect of imperfections on the hyperuniformity of many-body systems | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevB.97.054105 | - |
dc.identifier.eissn | 2469-9969 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PhysRevB.97.054105.pdf | 813.53 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.