Dimension reduction in heterogeneous neural networks: Generalized Polynomial Chaos (gPC) and ANalysis-Of-VAriance (ANOVA)
Author(s): Choi, M; Bertalan, T; Laing, CR; Kevrekidis, Yannis G.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xg25
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, M | - |
dc.contributor.author | Bertalan, T | - |
dc.contributor.author | Laing, CR | - |
dc.contributor.author | Kevrekidis, Yannis G. | - |
dc.date.accessioned | 2021-10-08T19:58:28Z | - |
dc.date.available | 2021-10-08T19:58:28Z | - |
dc.date.issued | 2016-09-01 | en_US |
dc.identifier.citation | Choi, M, Bertalan, T, Laing, CR, Kevrekidis, YG. (2016). Dimension reduction in heterogeneous neural networks: Generalized Polynomial Chaos (gPC) and ANalysis-Of-VAriance (ANOVA). European Physical Journal: Special Topics, 225 (6-7), 1165 - 1180. doi:10.1140/epjst/e2016-02662-3 | en_US |
dc.identifier.issn | 1951-6355 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xg25 | - |
dc.description.abstract | We propose, and illustrate via a neural network example, two different approaches to coarse-graining large heterogeneous networks. Both approaches are inspired from, and use tools developed in, methods for uncertainty quantification (UQ) in systems with multiple uncertain parameters – in our case, the parameters are heterogeneously distributed on the network nodes. The approach shows promise in accelerating large scale network simulations as well as coarse-grained fixed point, periodic solution computation and stability analysis. We also demonstrate that the approach can successfully deal with structural as well as intrinsic heterogeneities. | en_US |
dc.format.extent | 1165 - 1180 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | European Physical Journal: Special Topics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Dimension reduction in heterogeneous neural networks: Generalized Polynomial Chaos (gPC) and ANalysis-Of-VAriance (ANOVA) | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1140/epjst/e2016-02662-3 | - |
dc.identifier.eissn | 1951-6401 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dimension_reduction_heterogeneous_networks_gPC_ANOVA.pdf | 2.63 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.