Skip to main content

Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

Author(s): Guo, HY; Hill, DN; Leonard, AW; Allen, SL; Stangeby, PC; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wn4j
Abstract: A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
Publication Date: 1-Dec-2016
Electronic Publication Date: 14-Sep-2016
Citation: Guo, HY, Hill, DN, Leonard, AW, Allen, SL, Stangeby, PC, Thomas, D, Unterberg, EA, Abrams, T, Boedo, J, Briesemeister, AR, Buchenauer, D, Bykov, I, Canik, JM, Chrobak, C, Covele, B, Ding, R, Doerner, R, Donovan, D, Du, H, Elder, D, Eldon, D, Lasa, A, Groth, M, Guterl, J, Jarvinen, A, Hinson, E, Kolemen, E, Lasnier, CJ, Lore, J, Makowski, MA, McLean, A, Meyer, B, Moser, AL, Nygren, R, Owen, L, Petrie, TW, Porter, GD, Rognlien, TD, Rudakov, D, Sang, CF, Samuell, C, Si, H, Schmitz, O, Sontag, A, Soukhanovskii, V, Wampler, W, Wang, H, Watkins, JG. (2016). Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices. Nuclear Fusion, 56 (12), 126010 - 126010. doi:10.1088/0029-5515/56/12/126010
DOI: doi:10.1088/0029-5515/56/12/126010
ISSN: 0029-5515
EISSN: 1741-4326
Pages: 126010 - 126010
Type of Material: Journal Article
Journal/Proceeding Title: Nuclear Fusion
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.