Skip to main content

Homogeneous ice nucleation in an ab initio machine-learning model of water

Author(s): Piaggi, Pablo M; Weis, Jack; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G; Car, Roberto

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wh2df4x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPiaggi, Pablo M-
dc.contributor.authorWeis, Jack-
dc.contributor.authorPanagiotopoulos, Athanassios Z-
dc.contributor.authorDebenedetti, Pablo G-
dc.contributor.authorCar, Roberto-
dc.date.accessioned2024-06-13T13:23:18Z-
dc.date.available2024-06-13T13:23:18Z-
dc.date.issued2022-08-11en_US
dc.identifier.citationPiaggi, Pablo M, Weis, Jack, Panagiotopoulos, Athanassios Z, Debenedetti, Pablo G, Car, Roberto. (2022). Homogeneous ice nucleation in an ab initio machine-learning model of water. Proceedings of the National Academy of Sciences, 119 (33), 10.1073/pnas.2207294119en_US
dc.identifier.issn0027-8424-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wh2df4x-
dc.description.abstractUntil recently, simulating ice nucleation with quantum accuracy was deemed impossible due to the prohibitive computational cost of quantum-mechanical calculations. Recent progress enabled by machine learning has made these calculations tractable and thus greatly extended the field of application of molecular dynamics based on ab initio quantum-mechanical theory. We apply these advances to predict the rate of formation of ice nuclei in supercooled water and to study other quantities relevant to nucleation without relying on empirical force fields, albeit invoking the organizing framework of classical nucleation theory. This work is a step toward modeling nucleation processes in more realistic environments and at conditions in which chemical reactions play an important role.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the National Academy of Sciencesen_US
dc.rightsAuthor's manuscripten_US
dc.titleHomogeneous ice nucleation in an ab initio machine-learning model of wateren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1073/pnas.2207294119-
dc.date.eissued2022-08-08en_US
dc.identifier.eissn1091-6490-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Homogeneous ice nucleation in an ab initio machine-learning model of water.pdf3.56 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.