Eigenfunctions with Infinitely Many Isolated Critical Points
Author(s): Buhovsky, Lev; Logunov, Aleksandr; Sodin, Mikhail
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1wh2df1c
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Buhovsky, Lev | - |
dc.contributor.author | Logunov, Aleksandr | - |
dc.contributor.author | Sodin, Mikhail | - |
dc.date.accessioned | 2023-12-27T20:36:18Z | - |
dc.date.available | 2023-12-27T20:36:18Z | - |
dc.date.issued | 2020-12 | en_US |
dc.identifier.citation | Buhovsky, Lev, Logunov, Alexander, Sodin, Mikhail. (2020). Eigenfunctions with Infinitely Many Isolated Critical Points. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020 (10100 - 10113. doi:10.1093/imrn/rnz181 | en_US |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1wh2df1c | - |
dc.description.abstract | We construct a Riemannian metric on the 2D torus, such that for infinitely many eigen-values of the Laplace-Beltrami operator, a corresponding eigenfunction has infinitely many isolated critical points. A minor modification of our construction implies that each of these eigenfunctions has a level set with infinitely many connected components (i.e., a linear combination of two eigenfunctions may have infinitely many nodal domains). | en_US |
dc.format.extent | 10100 - 10113 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | INTERNATIONAL MATHEMATICS RESEARCH NOTICES | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Eigenfunctions with Infinitely Many Isolated Critical Points | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1093/imrn/rnz181 | - |
dc.date.eissued | 2019-09-10 | en_US |
dc.identifier.eissn | 1687-0247 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1811.03835.pdf | 1.35 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.