Skip to main content

Eigenfunctions with Infinitely Many Isolated Critical Points

Author(s): Buhovsky, Lev; Logunov, Aleksandr; Sodin, Mikhail

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wh2df1c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuhovsky, Lev-
dc.contributor.authorLogunov, Aleksandr-
dc.contributor.authorSodin, Mikhail-
dc.date.accessioned2023-12-27T20:36:18Z-
dc.date.available2023-12-27T20:36:18Z-
dc.date.issued2020-12en_US
dc.identifier.citationBuhovsky, Lev, Logunov, Alexander, Sodin, Mikhail. (2020). Eigenfunctions with Infinitely Many Isolated Critical Points. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020 (10100 - 10113. doi:10.1093/imrn/rnz181en_US
dc.identifier.issn1073-7928-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wh2df1c-
dc.description.abstractWe construct a Riemannian metric on the 2D torus, such that for infinitely many eigen-values of the Laplace-Beltrami operator, a corresponding eigenfunction has infinitely many isolated critical points. A minor modification of our construction implies that each of these eigenfunctions has a level set with infinitely many connected components (i.e., a linear combination of two eigenfunctions may have infinitely many nodal domains).en_US
dc.format.extent10100 - 10113en_US
dc.language.isoen_USen_US
dc.relation.ispartofINTERNATIONAL MATHEMATICS RESEARCH NOTICESen_US
dc.rightsAuthor's manuscripten_US
dc.titleEigenfunctions with Infinitely Many Isolated Critical Pointsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/imrn/rnz181-
dc.date.eissued2019-09-10en_US
dc.identifier.eissn1687-0247-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1811.03835.pdf1.35 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.