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Abstract. We construct a Riemannian metric on the 2-dimensional torus, such that for

infinitely many eigenvalues of the Laplace-Beltrami operator, a corresponding eigenfunc-

tion has infinitely many isolated critical points. A minor modification of our construction

implies that each of these eigenfunctions has a level set with infinitely many connected

components (i.e., a linear combination of two eigenfunctions may have infinitely many

nodal domains).

1. Introduction and the main result

Let (X, g) be a compact connected Riemannian manifold without boundary. The Rie-

mannian structure g on X defines the Laplace-Beltrami operator ∆g on the space of

smooth functions on X. The operator ∆g admits a spectral decomposition via orthonor-

mal basis of L2(X,Ωg) (where Ωg is the volume density on X induced by g), consisting of

smooth real-valued functions, and with corresponding real and non-negative eigenvalues:

∆gϕj + λjϕj = 0, where λ0 = 0 < λ1 6 λ2 6 . . ., and ϕ0 ≡ 1.

The number of connected components of the set Crit(ϕk) of the critical points of ϕk is

an important geometric characteristic of the eigenfunction ϕk. We denote it by Ncrit(k).

In [11], Yau asked whether there exists a non-trivial asymptotic lower bound on Ncrit(k).

The following theorem proven by Jakobson and Nadirashvili in [7] shows the negative

answer to this question:

Theorem (Jakobson-Nadirashvili). There exists a Riemannian metric on T2 and a se-

quence of eigenfunctions of the corresponding Laplace-Beltrami operator, such that the

corresponding eigenvalues converge to infinity, but the number of critical points of the

eigenfunctions from the sequence remains bounded.

Our result states that generally one cannot hope for an asymptotic upper bound on

Ncrit(k):

Theorem 1. On T2 there exists a Riemannian metric and a sequence of eigenfunctions of

the corresponding Laplace-Beltrami operator, with eigenvalues converging to infinity, such
1
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that each one of the eigenfunctions from the sequence has an infinite number of isolated

critical points.

Similarly to the construction of Jakobson and Nadirashvili, we also will construct a

Riemannian metric on T2 of the Liouville type. The “punch-line argument” in our proof

of Theorem 1 invokes the Brower’s fixed point theorem.

Let us mention that Enciso and Peralta-Salas [6] constructed a smooth metric such that

the first eigenfunction has arbitrarily large number of isolated critical points. Results of

opposite spirit were proven by Polterovich and Sodin [10] and Polterovich-Polterovich-

Stojisavljević [9].

It is worth to point out that, at present, we do not know what happens in the case

when the Riemannian metric g is real-analytic. In that case, an eigenfunction must have a

finite number of isolated critical points, however, we do not know whether there exists an

asymptotic upper bound for the number of critical points in terms of the corresponding

eigenvalue.

At last, we mention that minor modification of our construction implies that each of

the eigenfunctions in the statement of Theorem 1 has a level set with infinitely many

connected components. This feature is interesting in view of the failure of the Courant

nodal domains theorem for linear combinations of eigenfunctions, see Gladwell-Zhou [4],

Arnold [1], Bérard-Helffer [3], Bérard-Charron-Helffer [2] and references therein. We will

outline the needed modification at the end of this note.

2. Proof of Theorem 1

2.1. The metric and 1-dim reduction. Consider the coordinates (x, y) ∈ T2 = (R/2πZ)2

on the torus. Our Riemannian metric g on T2 will be of the form ds2 = Q(x)(dx2 + dy2),

where Q is a C∞ smooth, positive, 2π periodic function. Then the Laplace-Beltrami oper-

ator is ∆g = 1
Q(x)

(
∂2

∂x2
+ ∂2

∂y2

)
. Searching eigenfunctions ϕ of the form ϕ(x, y) = F (x)G(y)

with 2π-periodic functions F and G, the equation ∆gϕ + λϕ = 0 becomes equivalent to

the system

(1)

F ′′(x) + (λQ(x)− µ)F (x) = 0

G′′(y) + µG(y) = 0

for some µ ∈ R. Thus we get a sequence of solutions Gm(y) = eimy with µm = m2, where

m ∈ Z, and for each such m, the first equation in the system (1) becomes

(2) F ′′(x) + (λQ(x)−m2)F (x) = 0.
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For each given m, the eigenvalue problem (2) admits a spectral decomposition, where

we have a sequence of smooth solutions F = Fm,1, Fm,2, . . . with corresponding eigenvalues

λm,1 6 λm,2 6 . . . . Going back to our original eigenvalue problem on the torus, ∆gϕ +

λϕ = 0, we have found a sequence of solutions Fm,k(x) cosmy, Fm,k(x) sinmy. It is easy

to see that this sequence of solutions is complete in L2(T2, Qdxdy), and hence gives a

complete spectral decomposition of our original eigenvalue problem on the torus we will

not use this fact).

Our goal now is to find a smooth positive function Q ∈ C∞(R/2πZ), such that for

infinitely many integers m, there will exist a solution Fm of the equation (2) having in-

finitely many isolated critical points in R/2πZ. For such Q and Fm, the eigenfunction

Fm(x) cosmy (as well as the eigenfunction Fm(x) sinmy) will have infinitely many iso-

lated critical points.

We have reduced 2-dimensional eigenvalue problem to a 1-dimensional problem, and

for convenience, we will consider periodic functions on R, instead of functions on R/2πZ.

Moreover, by rescaling, we may assume that the functions are 8-periodic rather than

2π-periodic.

2.2. The main observation. Assume that u : R → R is a non-trivial solution of the

differential equation u′′(x) + K(x)u(x) = 0, where K : R → R is some smooth function.

Also assume that for some point x∗ ∈ R, we have K(x∗) = 0, and moreover, K makes a

large number of oscillations near x∗, such that these oscillations decay very fast when we

approach x∗. To be more precise, we suppose that for some

x∗ = xN < xN−1 < . . . < x1 < x∗ + ε,

we have (−1)iK|(xi+1,xi) < 0, and moreover, for every 1 6 i 6 N − 2,∣∣∣∣∫ xi

xi+1

K(x) dx

∣∣∣∣ is much larger than
N−1∑
j=i+1

∣∣∣∣∣
∫ xj

xj+1

K(x) dx

∣∣∣∣∣ .
Furthermore, assume that u′(x∗) = 0, that u is positive on the interval [x∗, x∗ + ε], and

the values of u on that interval are of the same order of magnitude. We claim that under

these assumptions, u has at least N − 2 critical points on (x∗, x∗ + ε).

Indeed, for any 1 6 i < N , we have

u′(xi)− u′(xi+1) =

∫ xi

xi+1

u′′(x) dx = −
∫ xi

xi+1

K(x)u(x) dx,

and moreover we have u′(xN) = u′(x∗) = 0. Hence, by our assumptions, for each 1 6 i <

N , the sign of u′(xi) = (u′(xi) − u′(xi+1)) + . . . + (u′(xN−1) − u′(xN)) is positive if i is
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even, and is negative when i is odd. Therefore for each 1 6 i < N , u has a critical point

ξi ∈ (xi+1, xi), which is moreover isolated since u′′(ξi) = −K(ξi)u(ξi) 6= 0. We conclude

that u has at least N − 2 isolated critical points on the interval (x∗, x∗ + ε).

We can also consider a more general setting where the function K has infinitely many

rapidly decaying oscillations near some point x∗, and in this case we may conclude that

u has infinitely many isolated critical points. More precisely, it is enough to assume the

following:

(1) We have some x∗ ∈ R and a strictly decreasing sequence (xi)
∞
i=1, such that

limi→∞ xi = x∗.

(2) We have a smooth function K : R → R such that (−1)iK|(xi+1,xi) < 0 for every i,

and ∣∣∣∣∫ xi

xi+1

K(x) dx

∣∣∣∣ ≥ C
∞∑

j=i+1

∣∣∣∣∣
∫ xj

xj+1

K(x) dx

∣∣∣∣∣
with some numerical constant C > 1.

(3) u : R→ R is a solution of u′′(x) +K(x)u(x) = 0 with u(x∗) > 0 and u′(x∗) = 0.

Then u has infinitely many isolated critical points on a small interval (x∗, x∗ + δ).

We will apply this idea to the sequence of periodic functions Ki(x) = λiQ(x)−m2
i and

the corresponding periodic solutions ui = Fmi of the ODE (2).

2.3. The construction. Here we will construct a family of smooth periodic functions

qS,τ (x) having infinitely many “cascades” each consisting of an infinite number of rapidly

decaying oscillations.

a) Let ψ : R→ [0, 1] be a smooth even function such that supp (ψ) ⊂ (−1,−1/4)∪(1/4, 1)

and such that ψ = 1 on [−3/4,−1/2] ∪ [1/2, 3/4]. For every t ∈ [0,∞), denote ψt(x) =

ψ(4tx) and then define the 2-periodic function ϕt(x) = 1−
∑

n∈Z ψt(x+ 2n).

b) Choose a smooth positive function q : R→ (0,∞) satisfying:

• q(x) = q(−x), x ∈ R,

• q(x+ 2) = q(x), x ∈ R,

• q is increasing on [−1, 0] and decreasing on [0, 1].

For t ∈ [0,∞), denote qt(x) = ϕt(x)(q(x) − q(4−t)) + q(4−t). We may assume that the

function q is “flat” enough at x = 0 so that qt → q in the C∞ topology, when t → ∞.

This is possible since qt− q = (ϕt− 1)(q− q(4−t)). The first factor vanishes outside of the

interval (4−t−1, 4−t). Given a function ϕt, we choose the function q so flat at the origin
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Figure 1.

Figure 2.

that the smallness of q − q(4−t) and its derivatives will compensate the size of ϕt and its

derivatives on the interval [4−t−1, 4−t].

c) Fix a smooth even function h : R → R with supp h ⊂ (−3/4,−1/2) ∪ (1/2, 3/4),

such that for some x∞ ∈ (1/2, 3/4) and for a strictly decreasing sequence (xi)
∞
i=1 ,

xi ∈ (x∞, 3/4), with limi→∞ xi = x∞, we have (−1)ih|(xi+1,xi) < 0 for every i, and that

moreover, for every i we have∣∣∣∣∫ xi

xi+1

h(x) dx

∣∣∣∣ ≥ C
∞∑

j=i+1

∣∣∣∣∣
∫ xj

xj+1

h(x) dx

∣∣∣∣∣
with some numerical constant C > 1. For each t ∈ [0,∞), denote ht(x) = h(4tx), and

then Ht(x) =
∑

n∈Z ht(x+ 2n).

d) For any finite 1-separated set S ⊂ [0,∞) (1-separation means that |s− t| > 1 for every

s 6= t ∈ S), and for any function τ : S → R, define the function qS,τ : R → R as follows.
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Figure 3.

We set q∅,τ = q, and if S ⊂ [0,∞) is a non-empty finite set, then we choose some t ∈ S,

denote S ′ = S \ {t} and τ ′ = τ|S′ , and define qS,τ (x) = ϕt(x)(qS′,τ ′(x) − qS′,τ ′(4
−t)) +

qS′,τ ′(4
−t) + τ(t)Ht(x). For each t ∈ S, this creates a cascade of oscillations around the

Figure 4.

point 4−tx∞ of intensity τ(t). Note that
{
x : qS,τ (x) 6= q(x)

}
⊂
⋃
t∈S(4−t−1, 4−t) (the

intervals on the RHS are disjoint), and that, for t ∈ S, qS,τ (4
−tx∞) = q(4−t).

e) Choose a smooth positive function q̃ : R→ R such that:

• q̃(x+ 2) = q̃(x), x ∈ R,

• q̃(−x) = q̃(x), x ∈ R,

• q̃(x) = q(5x), x ∈ [0, 1/5],

• q̃(x) < q(4x), x ∈ [1/5, 2/9],

• q̃(x) < q(1), x ∈ [2/9, 1].
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Figure 5.

We claim that for any finite 1-separated set S ⊂ [1,∞) and for any sufficiently small

function τ : S → R, we have q̃ 6 qS,τ 6 q. The upper bound is true for τ small enough

by the definition of the function qS,τ . To check the lower bound, it is enough to show

that, for qS := qS,0 (where 0 : S → R is the zero function), we have qS(x) > q̃(x) for any

x ∈ (0, 1]. Let us check this.

Note that, by the construction of qS, we have qS(x) > q(4x) for x ∈ [0, 1/4], and

qS(x) > q(1) for x ∈ [1/4, 1]. Take any x ∈ (0, 1]. Then

Case 1: x ∈ (0, 1/5]. In that case we have qS(x)−q̃(x) > q(4x)−q̃(x) = q(4x)−q(5x) > 0.

Case 2: x ∈ [1/5, 2/9]. Then qS(x)− q̃(x) > q(4x)− q̃(x) > 0.

Case 3: x ∈ [2/9, 1]. Then qS(x)− q̃(x) > q(1)− q̃(x) > 0.

2.4. Two lemmas. Here we will bring two lemmas on the solutions of the periodic

ODE (2). The first lemma will guarantee that under a certain choice of λ = Λm,Q the

linear space of solutions to ODE (2) is two-dimensional. This will ensure existence of a

solution Fm with vanishing derivative at a given point x∗, which is needed for generation

of oscillations of Fm nearby x∗.
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Let Q : R → (0,∞) be a 2-periodic positive smooth even function. For every m ∈ N,

consider the Dirichlet problem

(3)


u : [0, 4]→ R

u′′(x) + (λQ(x)−m2)u(x) = 0

u(0) = u(4) = 0

We denote by ΛQ,m the first eigenvalue and by UQ,m the first eigenfunction of this

Dirichlet problem, extend UQ,m to [0, 8] by UQ,m(x) = −UQ,m(8 − x) for x ∈ [4, 8], and

then extend UQ,m to the whole R by making it 8-periodic. Then UQ,m : R→ R is a smooth

solution of

(4)

u : R→ R is 8-periodic

u′′(x) + (λQ(x)−m2)u(x) = 0

Lemma 2. The space of solutions to (4) with λ = ΛQ,m is two-dimensional.

Proof of Lemma 2. Recall that Q is even and 2-periodic. We have U ′Q,m(2) = 0, since

otherwise v(x) := UQ,m(4− x) is another solution of (3) with λ = ΛQ,m, which is linearly

independent with UQ,m|[0,4], while the first eigenvalue of the Dirichlet problem (3) must

be simple. Therefore we get: UQ,m(0) = 0, U ′Q,m(0) 6= 0, UQ,m(2) 6= 0, U ′Q,m(2) = 0.

Hence if we define VQ,m = UQ,m(x + 2), then VQ,m(x) is a solution of (4) and is linearly

independent with UQ,m. We conclude that the space of solutions of (4) with λ = ΛQ,m is

two-dimensional (obviously, the dimension cannot be greater than 2). �

In the second lemma we estimate the size of ΛQ,m chosen according to Lemma 2.

Lemma 3. Let Q : R→ (0,∞) be a 2-periodic positive smooth function with Q(0) > Q(x),

x /∈ 2Z. Then we have

ΛQ,m >
m2

Q(0)

for each m, and for every ε > 0, we have

ΛQ,m <
m2

Q(0)− ε
when m is large enough.

Proof of Lemma 3. The variational principle applied to the Dirichlet problem (3) (see, for

instance, [5, Ch. VI, §1]) says that

ΛQ,m = min

∫ 4

0
(u′(x))2 +m2(u(x))2 dx∫ 4

0
Q(x)(u(x))2 dx

,
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where the minimum is taken over all smooth functions u : [0, 4]→ R with u(0) = u(4) = 0.

From here we clearly have

ΛQ,m >
m2

maxQ
=

m2

Q(0)
.

Now, choose δ > 0 small enough, and pick a smooth function u : [0, 4] → R with

supp (u) ⊂ (2− δ, 2 + δ) and u 6≡ 0. Then for every m we have

ΛQ,m 6

∫ 4

0
(u′(x))2 +m2(u(x))2 dx∫ 4

0
Q(x)(u(x))2 dx

6

∫ 4

0
(u′(x))2 +m2(u(x))2 dx

(min[2−δ,2+δ]Q) ·
∫ 4

0
(u(x))2 dx

=
C +m2

min[−δ,δ]Q
,

where

C =

∫ 4

0
(u′(x))2 dx∫ 4

0
(u(x))2 dx

.

From here we see that by choosing δ > 0 so small that min[−δ,δ]Q > Q(0)− ε, we obtain

ΛQ,m <
m2

Q(0)− ε

for large enough m. �

2.5. The main argument. We need to find an increasing sequence (mi) of positive

integers and a 1-separated set S = (ti) so that for any fast decaying sequence τ(ti),

letting Q = qS,τ , we get ΛQ,miQ(4−tix∞) = m2
i , i = 1, 2, ... , where ΛQ,mi is the first

eigenvalue of the Dirichlet problem (3). Note that Q(4−tix∞) = qS,τ (4
−tix∞) = q(4−ti).

Using Lemma 3 and a continuous dependence of the first eigenvalue ΛQ,m on the function

Q, it is not difficult to find a positive integer m such that, for any sufficiently small τ ,

there exists t (depending on m and τ such that Λq{t},τ q(4
−t) = m2. This will yield the

existence of a metric on T2 with one Laplace eigenfunction with infinitely many critical

points. To construct a metric with a sequence of eigenfunctions having infinitely many

critical points we will use the following proposition.

Proposition 4. There exist sequences: m1 < m2 < . . . of positive integers, ε1, ε2, . . . ∈
(0,∞), and M0 = 0,M1,M2, . . . ∈ [0,∞), with Mi+1 > Mi + 1 such that, for any k ∈ N
and any τ1, τ2, . . . , τk ∈ R with |τi| 6 εi, one can find t1, . . . , tk with ti ∈ [Mi−1 + 1,Mi],

i = 1, 2, . . . k, with the following property:

For S = {t1, t2, . . . , tk} and for the function τ : S → R, τ(ti) = τi, i = 1, 2, . . . , k, the

function Q = qS,τ satisfies ΛQ,miQ(4−tix∞) −m2
i = 0 for i = 1, 2, . . . , k, where ΛQ,mi is

the first eigenvalue of the problem (3) with m = mi.
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Remark 5. As we have already mentioned, by construction of the function qS,τ in 2.3d,

in the setting of the proposition we always have Q(4−tix∞) = qS,τ (4
−tix∞) = q(4−ti) for

i = 1, 2, . . . , k.

Proof of Proposition 4. First, we choose sequences (mk), (εk), (Mk) inductively as follows

(the values t1, . . . , tk will be chosen in the very end of the proof).

k = 1: By Lemma 3, there exists m1 ∈ N such that

m2
1

q(0)
< Λq̃,m1 <

m2
1

q(1/4)
.

(Recall that max q̃ = q̃(0) = q(0)). Then again by the lemma and by the monotonicity

property for eigenvalues (q > q̃), we have

m2
1

q(0)
< Λq,m1 6 Λq̃,m1 <

m2
1

q(1/4)
.

Let M1 > 1 be such that

q(4−M1) =
m2

1

Λq,m1

.

Now choose ε1 such that for any t1 ∈ [1,M1] and τ1 ∈ [−ε1, ε1] we have q̃ 6 qS,τ 6 q on

R, where S = {t1}, τ : S → R, τ(t1) = τ1.

The inductive step: Assume that we have chosen

m1, . . . ,mk−1, ε1, . . . , εk−1, M1, . . . ,Mk−1,

and now choose mk, εk,Mk. By Lemma 3, there exists mk ∈ N such that

m2
k

q(0)
< Λq̃,mk <

m2
k

q(4−1−Mk−1)
.

Then, again by the lemma and by the monotonicity property for eigenvalues, we have

m2
k

q(0)
< Λq,mk 6 Λq̃,mk <

m2
k

q(4−1−Mk−1)
.

Now let Mk > Mk−1 + 1 be such that

q(4−Mk) =
m2
k

Λq,mk

,

and let εk > 0 be such that for any tk ∈ [Mk−1 + 1,Mk] and any τk ∈ [−εk, εk] we have

q̃ 6 qS,τ 6 q on R, where S = {tk} and τ : S → R, τ(tk) = τk. This completes inductive

construction of the sequences (mk), (εk), (Mk).

Recall that M0 = 0. Let k ∈ N, and let

P := [M0 + 1,M1]× [M1 + 1,M2]× · · · × [Mk−1 + 1,Mk] ⊂ Rk .
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Let τ1, . . . , τk ∈ R be such that |τi| 6 εi, i = 1, 2, . . . , k. Now define the map F : P → Rk

as follows. For any (t1, . . . , tk) ∈ P , set S := {t1, . . . , tk}, let τ : S → R be the function

such that τ(ti) = τi, i = 1, 2, . . . k, and denote Q = qS,τ . We have q̃ 6 Q 6 q, hence for

each 1 6 i 6 k,

m2
i

q(4−Mi)
= Λq,mi 6 ΛQ,mi 6 Λq̃,mi <

m2
i

q(4−1−Mi−1)
,

and therefore there exists a unique si ∈ (Mi−1 + 1,Mi] such that

q(4−si) =
m2
i

ΛQ,mi

.

Then we put F (t1, . . . , tk) = (s1, . . . , sk).

Note first, that F is continuous (this follows from the continuous dependence of the

first Dirichlet eigenvalue ΛQ,m on the function Q). Secondly, for any (t1, . . . , tk) ∈ P we

have (s1, . . . , sk) = F (t1, . . . , tk) ∈ P . That is, F (P ) ⊂ P . Therefore, by the Brower fixed

point theorem, there exists a point (t1, . . . , tk) ∈ P for which F (t1, . . . , tk) = (t1, . . . , tk),

and hence by Remark 5 we have

Q(4−tix∞) = q(4−ti) =
m2
i

ΛQ,mi

for i = 1, 2, . . . , k. This finishes the proof of the proposition. �

2.6. Completing the proof of Theorem 1. We fix the sequences (mi), (Mi), and (εi)

as in Proposition 4. For any k ∈ N and any τ1, . . . , τk with |τi| ≤ εi, Proposition 4

provides us with the values ti(k) ∈ [Mi−1 + 1,Mi], 1 ≤ i ≤ k such that, putting S(k) =

{t1(k), . . . , tk(k)}, Qk = qS(k),τ , we get

ΛQk,miQk(4
−tix∞) = m2

i , i = 1, . . . , k.

Now, we let k → ∞. Using a diagonal argument, we assume that, for each i ∈ N,

ti(k)→ ti ∈ [Mi−1+1,Mi]. Then we set S = {t1, t2, . . .}. Making the values τi sufficiently

small, we note that Qk = qS(k),τ → qS,τ in the C∞-topology, and let Q = qS,τ . At last,

recalling that the first eigenvalue ΛQ,m of the Dirichlet problem (3) continuously depends

on Q, we arrive at the following corollary:

Corollary 6. There exists a sequence m1,m2, . . . ∈ N, an infinite set S = {t1, t2, . . .} ⊂
[1,∞), with ti+1 > ti + 1, and a function τ : S → R \ {0}, such that the function Q :=

qS,τ : R→ R is C∞-smooth and satisfies

ΛQ,miQ(4−tix∞)−m2
i = 0, i ∈ N .
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Now we will readily finish off the proof of Theorem 1. Let Q be as in the corollary.

Recall that the function h makes infinitely many rapidly decreasing oscillations near x∞

(the function h and the point x∞ were chosen in Section 2.3, c)). Hence for each i, the

function Q(x) makes infinitely many rapidly decreasing oscillations near 4−tix∞.

Fix i. Since the space of solutions of (4) is 2-dimensional (by Lemma 2), we can always

find a solution of

(5)

u : R→ R is 8-periodic

u′′(x) + (ΛQ,miQ(x)−m2
i )u(x) = 0,

denoted by ui(x), such that ui(4
−tix∞) > 0 and u′i(4

−tix∞) = 0. Applying our main

observation (Section 2.2) with Ki(x) = ΛQ,miQ(x) − m2
i and x∗ = 4−tix∞, we conclude

that ui has infinitely many isolated critical points near 4−tix∞. This finishes the proof of

Theorem 1. �

3. Eigenfunctions with a level set having infinitely many connected

components

Here we outline changes in our construction needed to obtain a sequence of eigenfunc-

tions having a level set with infinitely many connected components. For this, we replace

condition (2) in Section 2.2 by a stronger one:

(2′) K : R→ R is a smooth function such that (−1)iK|(xi+1,xi) < 0 for every i, and∣∣∣∣∫ xi

xi+1

(xi − x)K(x) dx

∣∣∣∣ ≥ C
∞∑

j=i+1

∣∣∣∣∣
∫ xj

xj+1

K(x) dx

∣∣∣∣∣
with some numerical constant C > 1.

As above, we denote by u : R→ R a solution to u′′ +Ku = 0 with u(x∗) > 0, u′(x∗) = 0.

Choose j0 so that xj0 − x∗ < 1, and for every x, y ∈ [x∗, xj0 ], 1/C ′ ≤ u(x)/u(y) ≤ C ′ with

1 < C ′ < C. Then it is not difficult to check that, for j ≥ j0, we have

(i) sign(u′(xj)) = (−1)j;

(ii) each interval (xj+1, xj) contains exactly one critical point ξj of u; it is a local

maximum of u if j is odd, and a local minimum otherwise;

(iii) sign(u(xj)− u(xj+1)) = (−1)j;

(iv) sign(u(ξj)− u(x∗)) = (−1)j−1.

We conclude that if (ηj)j≥j0 are solutions to the equation u = u(x∗) on the interval (x∗, xj0 ],

then the sequences (ηj) and (ξj) interlace, i.e., ηj0 > ξj0 > ηj0+1 > ξj0+1 > ηj0+2 > . . ..



13

Now, let the sequences (mi) and (ti), the function Q, and the values ΛQ,mi be the

same as in Corollary 6. By Fmi we denote a solution of the 8-periodic problem F ′′ +

(ΛQ,miQ − m2
i )F = 0 satisfying Fmi(4

−tix∞) > 0, and F ′mi(4
−tix∞) = 0. Then the

functions ϕi(x, y) = Fmi(x) cosmiy are Laplacian eigenfunctions on the torus T2 equipped

with the Riemannian metric ds2 = Q(x)(dx2 + dy2). Then, it is not difficult to see that,

for each of these eigenfunctions, the level sets ϕi = Li with Li = Fmi(4
−tix∞), have

infinitely many connected components.

Indeed, fix i, take an odd j ≥ j0(i), and consider the rectangle Rj =
{
ηj+1 ≤ x ≤

ηj, |y| ≤ π/(2mi)
}

. Note that ϕi > Li on the interval
{
ηj+1 < x < ηj, y = 0

}
, and

that ϕi = Li at the end points of this interval. Furthermore, for each x ∈ [ηj+1, ηj], the

function y 7→ ϕi(x, y) decays to 0 when |y| increases from 0 to π/(2mi). We conclude

that, for each odd j ≥ j0(i), the set {ϕi = Li} ∩ Rj is a topological circle. Clearly, these

sets are disjoint for distinct odd j ≥ j0(i). We are done.
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