Skip to main content

Risk-sensitive inverse reinforcement learning via semi- and non-parametric methods

Author(s): Singh, S; Lacotte, J; Majumdar, Anirudha; Pavone, M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vk31
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, S-
dc.contributor.authorLacotte, J-
dc.contributor.authorMajumdar, Anirudha-
dc.contributor.authorPavone, M-
dc.date.accessioned2021-10-08T20:20:08Z-
dc.date.available2021-10-08T20:20:08Z-
dc.date.issued2018en_US
dc.identifier.citationSingh, S, Lacotte, J, Majumdar, A, Pavone, M. (2018). Risk-sensitive inverse reinforcement learning via semi- and non-parametric methods. International Journal of Robotics Research, 37 (1713 - 1740. doi:10.1177/0278364918772017en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vk31-
dc.description.abstractThe literature on inverse reinforcement learning (IRL) typically assumes that humans take actions to minimize the expected value of a cost function, i.e., that humans are risk neutral. Yet, in practice, humans are often far from being risk neutral. To fill this gap, the objective of this paper is to devise a framework for risk-sensitive (RS) IRL to explicitly account for a human’s risk sensitivity. To this end, we propose a flexible class of models based on coherent risk measures, which allow us to capture an entire spectrum of risk preferences from risk neutral to worst case. We propose efficient non-parametric algorithms based on linear programming and semi-parametric algorithms based on maximum likelihood for inferring a human’s underlying risk measure and cost function for a rich class of static and dynamic decision-making settings. The resulting approach is demonstrated on a simulated driving game with 10 human participants. Our method is able to infer and mimic a wide range of qualitatively different driving styles from highly risk averse to risk neutral in a data-efficient manner. Moreover, comparisons of the RS-IRL approach with a risk-neutral model show that the RS-IRL framework more accurately captures observed participant behavior both qualitatively and quantitatively, especially in scenarios where catastrophic outcomes such as collisions can occur.en_US
dc.format.extent1713 - 1740en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Journal of Robotics Researchen_US
dc.rightsAuthor's manuscripten_US
dc.titleRisk-sensitive inverse reinforcement learning via semi- and non-parametric methodsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1177/0278364918772017-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Risk-sensitive Inverse Reinforcement Learning via Semi- and Non-Parametric Methods.pdf6.28 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.