Skip to main content

Holographic Fermi surfaces at finite temperature in top-down constructions

Author(s): Cosnier-Horeau, Charles; Gubser, Steven S

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vd2q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosnier-Horeau, Charles-
dc.contributor.authorGubser, Steven S-
dc.date.accessioned2017-11-21T19:37:33Z-
dc.date.available2017-11-21T19:37:33Z-
dc.date.issued2015-03-15en_US
dc.identifier.citationCosnier-Horeau, Charles, Gubser, Steven S. (2015). Holographic Fermi surfaces at finite temperature in top-down constructions. PHYSICAL REVIEW D, 91 (10.1103/PhysRevD.91.066002en_US
dc.identifier.issn1550-7998-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vd2q-
dc.description.abstractWe calculate the two-point Green’s functions of operators dual to fermions of maximal gauged supergravity in four and five dimensions, in finite-temperature backgrounds with finite charge density. The numerical method used in these calculations is based on differential equations for bilinears of the supergravity fermions rather than the equations of motion for the fermions themselves. The backgrounds we study have vanishing entropy density in appropriate extremal limits. Holographic Fermi surfaces are observed when the scalar field participating in the dual field theory operator has an expectation value, which makes sense from the point of view that the quasiparticles near the Fermi surfaces observed carry nonsinglet gauge quantum numbers in the dual field theory.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Den_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleHolographic Fermi surfaces at finite temperature in top-down constructionsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevD.91.066002-
dc.date.eissued2015-03-06en_US
dc.identifier.eissn1550-2368-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevD.91.066002.pdf1.26 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.