To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1vc60
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, X | - |
dc.contributor.author | Zhao, T | - |
dc.contributor.author | Arora, R | - |
dc.contributor.author | Liu, H | - |
dc.contributor.author | Haupt, J | - |
dc.date.accessioned | 2021-10-11T14:17:06Z | - |
dc.date.available | 2021-10-11T14:17:06Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.citation | Li, Xingguo, Tuo Zhao, Raman Arora, Han Liu, and Jarvis Haupt. "Stochastic variance reduced optimization for nonconvex sparse learning." In Proceedings of The 33rd International Conference on Machine Learning, PMLR 48, pp. 917-925. 2016. | en_US |
dc.identifier.issn | 2640-3498 | - |
dc.identifier.uri | http://proceedings.mlr.press/v48/lid16.html | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1vc60 | - |
dc.description.abstract | We propose a stochastic variance reduced optimization algorithm for solving a class of large-scale nonconvex optimization problems with cardinality constraints, and provide sufficient conditions under which the proposed algorithm enjoys strong linear convergence guarantees and optimal estimation accuracy in high dimensions. Numerical experiments demonstrate the efficiency of our method in terms of both parameter estimation and computational performance. | en_US |
dc.format.extent | 917 - 925 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Proceedings of The 33rd International Conference on Machine Learning, PMLR 48 | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Stochastic variance reduced optimization for nonconvex sparse learning | en_US |
dc.type | Conference Article | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
VarReducedOptimizationSparseLearn.pdf | 952.5 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.