Skip to main content

Stochastic variance reduced optimization for nonconvex sparse learning

Author(s): Li, X; Zhao, T; Arora, R; Liu, H; Haupt, J

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vc60
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, X-
dc.contributor.authorZhao, T-
dc.contributor.authorArora, R-
dc.contributor.authorLiu, H-
dc.contributor.authorHaupt, J-
dc.date.accessioned2021-10-11T14:17:06Z-
dc.date.available2021-10-11T14:17:06Z-
dc.date.issued2016en_US
dc.identifier.citationLi, Xingguo, Tuo Zhao, Raman Arora, Han Liu, and Jarvis Haupt. "Stochastic variance reduced optimization for nonconvex sparse learning." In Proceedings of The 33rd International Conference on Machine Learning, PMLR 48, pp. 917-925. 2016.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v48/lid16.html-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vc60-
dc.description.abstractWe propose a stochastic variance reduced optimization algorithm for solving a class of large-scale nonconvex optimization problems with cardinality constraints, and provide sufficient conditions under which the proposed algorithm enjoys strong linear convergence guarantees and optimal estimation accuracy in high dimensions. Numerical experiments demonstrate the efficiency of our method in terms of both parameter estimation and computational performance.en_US
dc.format.extent917 - 925en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of The 33rd International Conference on Machine Learning, PMLR 48en_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleStochastic variance reduced optimization for nonconvex sparse learningen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
VarReducedOptimizationSparseLearn.pdf952.5 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.