Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

Xingguo Li*
Tuo Zhao!
Raman Arora'
Han Liu?
Jarvis Haupt*

LIXX1661 @UMN.EDU
TZHAOS5 @JHU.EDU

ARORA @CS.JHU.EDU
HANLIU @PRINCETON.EDU
JDHAUPT @ UMN.EDU

*Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
tDepartment of Computer Science, Johns Hopkins University, Baltimore, MD 21218
fDepartment of Operations Research and Financial Engineering, Princeton University, NJ 08544

Xingguo Li and Tuo Zhao equally contributed.

Abstract

We propose a stochastic variance reduced opti-
mization algorithm for solving a class of large-
scale nonconvex optimization problems with car-
dinality constraints, and provide sufficient condi-
tions under which the proposed algorithm enjoys
strong linear convergence guarantees and opti-
mal estimation accuracy in high dimensions. Nu-
merical experiments demonstrate the efficiency
of our method in terms of both parameter esti-
mation and computational performance.

1. Introduction

High dimensionality is challenging from both the statisti-
cal and computational perspectives. To make the analysis
manageable, we usually assume that only a small number
of variables are relevant for modeling the response variable.
In the past decade, a large family of ¢; regularized or ¢;
constrained sparse estimators have been proposed, includ-
ing Lasso (Tibshirani, 1996), Logistic Lasso (Van de Geer,
2008), Group Lasso (Yuan & Lin, 2006), Graphical Lasso
(Banerjee et al., 2008; Friedman et al., 2008), and more.
The ¢, regularization serves as a convex surrogate for con-
trolling the cardinality of the parameters, and a large family
of algorithms such as proximal gradient algorithms (Nes-
terov, 2013) have been developed for finding ¢; regular-
ized estimators in polynomial time. However, techniques
based on convex relaxation, using ¢; norm as a surrogate
for ¢y constraint, often incur large estimation bias, and at-
tain worse empirical performance than those based on the
cardinality constraint (Fan & Li, 2001; Zhang, 2010; Zhao
etal., 2014a; Zhao & Liu, 2016). This motivates us to study
a family of cardinality constrained M-estimators. Formally,
we consider the nonconvex problem:
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miﬂgd Flw) st |wlo <k, (1.1)

we
where F (w) is a smooth and nonstrongly convex loss func-
tion, and ||w/||o denotes the number of nonzero entries in w.

To solve (1.1), a gradient hard thresholding (GHT) algo-
rithm has been studied in the statistics as well as the ma-
chine learning community over the past few years (Blu-
mensath & Davies, 2009; Foucart, 2011; Yuan et al., 2013;
Jain et al., 2014). GHT involves performing a gradient up-
date followed by a hard thresholding operation. Let H (w)
denote a hard thresholding operator that keeps the largest
k entries in magnitude and sets the other entries equal to
zero. Then, given a solution w**1) at the t-th iteration,
GHT performs the following update:

w1 = 2y () — T F (),

where H(+) is the hard thresholding operator, which keeps
the largest k£ (in magnitude) entries and sets the other en-
tries equal to zero, VF(w(*1) is the gradient of the ob-
jective at w(*+1) and 7 is a step size. Existing literature has
shown that under suitable conditions, the GHT algorithm
attains linear convergence to an approximately global opti-
mum with optimal estimation accuracy with high probabil-
ity (Yuan et al., 2013; Jain et al., 2014).

The GHT algorithm, though enjoying good convergence
rates, is not suitable for solving large-scale problems. The
computational bottleneck stems from the fact that the GHT
algorithm evaluates the (full) gradient at each iteration;
its computational complexity therefore depends linearly on
the number of samples. The GHT algorithm, therefore,
becomes computationally expensive for high-dimensional
problems with large sample size.

To address the scalability issue, (Nguyen et al., 2014) con-
siders a scenario that is a typical setting in machine learning
wherein the objective function decomposes over samples,
i.e. where the objective function F(w) takes an additive
form over many smooth component functions:
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Flw) = %Z fi(w) and VF(w)= %Zv fi(w),

and each f;(w) is associated with a few samples (i.e., the
mini-batch setting). In such settings, we exploit the ad-
ditive nature of F(w) and consider a stochastic gradient
hard thresholding (SGHT) algorithm based on unbiased es-
timates of the full gradient rather than computing it. In
particular, the SGHT algorithm estimates the full gradient
VF(w**V) by a stochastic gradient V f;(w*+1)), where
fi(w) is uniformly randomly sampled from all n compo-
nent functions at each iteration. Though the SGHT algo-
rithm greatly reduces the computational complexity in each
iteration, it can only obtain an estimator with suboptimal
estimation accuracy, owing to the variance of the stochas-
tic gradient introduced by random sampling. Moreover, the
theoretical analysis in (Nguyen et al., 2014) requires JF (w)
to satisfy the Restricted Isometry Property (RIP) with pa-
rameter 1/7, i.e., the restricted condition number of the
Hessian matrix V2F (w) cannot exceed 4/3 (see more de-
tails in §3). Taking sparse linear regression as an exam-
ple, such an RIP condition requires the design matrix to be
nearly orthogonal, which is not satisfied by many simple
random correlated Gaussian designs (Raskutti et al., 2010).

To address the suboptimal estimation accuracy and the re-
strictive requirement on F(w) in the stochastic setting, we
propose a stochastic variance reduced gradient hard thresh-
olding (SVR-GHT) algorithm. More specifically, we ex-
ploit a semi-stochastic optimization scheme to reduce the
variance introduced by the random sampling (Johnson &
Zhang, 2013; Kone¢ny & Richtarik, 2013; Zhao et al.,
2014b). The SVR-GHT algorithm contains two nested
loops: In each outer loop, SVR-GHT calculates the full
gradient. In the subsequent inner loops, on each iteration
the stochastic gradient update is adjusted by the full gradi-
ent followed by hard thresholding. This simple modifica-
tion enables the algorithm to attain linear convergence to an
approximately global optimum with optimal estimation ac-
curacy, and meanwhile the amortized computational com-
plexity remains similar to that of conventional stochastic
optimization. Moreover, our theoretical analysis is appli-
cable to an arbitrarily large restricted condition number of
the Hessian matrix V2F (w).

Several existing algorithms are closely related to our pro-
posed algorithm, including the proximal stochastic vari-
ance reduced gradient algorithm (Xiao & Zhang, 2014),
stochastic averaging gradient algorithm (Roux et al., 2012)
and stochastic dual coordinate ascent algorithm (Shalev-
Shwartz & Zhang, 2013). However, these algorithms guar-
antee global linear convergence only for strongly convex
optimization problems. Several existing statistical meth-
ods are also closely related to cardinality constrained M-
estimators, including nonconvex constrained/regularized

M-estimators (Shen et al., 2012; Loh & Wainwright,
2013). These methods usually require somewhat compli-
cated computational formulation and often involve many
tuning parameters (see more details in §6).

2. Algorithm

Before we proceed with the proposed algorithm, we intro-
duce some notation. Given an integer n > 1, we define
[n] = {1,...,n}. Givenavectorv = (vy,...,v4)" € RY,
we define vector norms: [[v]|; = 3=, v;l, [[0]|3 = 2, 07,
and ||v||oc = max; |v;|. Given an index set Z C [d], we
define Z€ as the complement set of Z, and v7 € R%, where
[vz]; = vjif j € Zand [vg]; = 0if j ¢ Z. We use
supp(v) to denote the index set of nonzero entries of v.
Given two vectors v, w € R%, we use (v, w) = Y0 vw;
to denote the inner product. Given a matrix A € R™%d we
use AT to denote the transpose, and A, (or A.,;) to de-
note the ¢-th row (or j-th column) of A. Given an index
set Z C [d], we denote the submatrix of A with all row (or
column) indices in Z by Az, (or A.7). Moreover, we use
the common notations of Q(-) and O(-) to characterize the
asymptotics of two real sequences. We denote log(+) as the

natural logarithm when we do not specify the base.

We summarize the proposed stochastic variance reduced
gradient hard thresholding (SVR-GHT) algorithm in Algo-
rithm 1. Different from the SGHT algorithm proposed in
(Nguyen et al., 2014), our SVR-GHT algorithm adopts the
semi-stochastic optimization scheme proposed in (Johnson
& Zhang, 2013), which can guarantee that the variance in-
troduced by stochastic sampling over component functions
diminishes with the optimization error.

Algorithm 1 Stochastic Variance Reduced Gradient Hard
Thresholding Algorithm.
Input: update frequency m, step size parameter 7, sparsity
k, and initial solution w(®)
forr=1,2,...
w=w"", =1L, Vi), w =
fort=0,1,...,m—1
(S1) Randomly sample i; from [n]
(82) w! ) = w®) —n (V f;,(wh) = V f;,(w) + )
(83) w(t+1) _ Hk (w(t+1))
end for
15(7") — ,w(m)

end for

3. Analysis

Throughout the analysis, we assume that the objective
function F(w) satisfies the restricted strong convexity
(RSC) condition, and the component functions { f; (w)}7_,
satisfy the restricted strong smoothness (RSS) condition.

Definition 3.1 (Restricted Strong Convexity Condition). A
differentiable function F is restricted p; -strongly convex
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at sparsity level s if there exists a constant p; > 0 such
that for any w, w’ € R with ||w — w'||op < s, we have

F(w) — F(w') — (VF(w' 3.1

Definition 3.2 (Restricted Strong Smoothness Condition).
For any i € [n], a differentiable function f; is restricted p; -
strongly smooth at sparsity level s if there exists a uniform
constant p > 0 such that for any w, w’ € R? with |Jw —
w'[|p < s, we have

filw) = fi(w') = (Vfi(w'), w —w') <
28

We also define the restricted condition number as ks = p; .

s

Jow — ) > 5w — w3

(3.2)

.
5 llw — w3

(I) Computational Theory: We first present our main re-
sult characterizing the error of the objective value and esti-
mation error of parameters.

Theorem 3.3. Let w* be a sparse vector of the true model
parameter such that ||[w*||o < k*. Suppose F(w) satisfies
RSC condition and { f; (w) }; satisfy RSS condition with
s = 2k+k*, and Algorithm 1 is invoked with & > C’mgk*,
npd € [C2,C3] and m > Cyk, for some constants
Cl, CQ, 03 and 04. Define f = supp (Hgk(v}-( *))> @]
supp(w satisfying

*). Then, given some o = 1 + \/W

np;(lfzn(;?)tlm_l) + 162’;* — < 2, Algorithm 1 returns

E[F(@") - F(w)] < ()" [F@) - Fw)] + g1 (w"),
(3.3)

) —wy < P, g

IVzF (w*)|3 and go(w*) =
* 12n

: )l (1—6npd)ps
bations depending on w*. Moreover, given a constant
d € (0,1) and a pre-specified accuracy £ > 0, we need at
4log (f(w“)gf(w*)

where gl(w*) = m

M + [|V2F(w are pertur-

most r = { outer iterations such

that with probability at least 1 — §, we have simultaneously

F@'") — Fw*) < e+ g1 (w"), (3.5)

@™ —w*||s < \/2¢/ps + g2(w). (3.6
Theorem 3.3 has three important implications:  (I) Our

analysis for SVR-GHT allows £ to increase with (n, d, k*)
as long as F(w) and all f;(w)’s satisfy RSC and RSS at
sparsity level s = Q(k2k*). In contrast, the analysis for
SGHT in (Nguyen et al., 2014) requires xk < %, which
can be restrictive; (II) Existing literature shows that di-
rectly calculating min||,|;,<x+ F (w) is NP-hard (Natara-
jan, 1995). But with a suitably chosen k¥ = Q(x2k*),
we can obtain a good approximation of w* by SVR-
GHT; (III) To get w") satisfying (3.5) and (3.6), we need
O(log(1)) outer iterations. Since within each outer itera-
tion, we need to calculate a full gradient and m stochas-
tic variance reduced gradients, the overall computational

complexity is O ([n + k5] - log(1)). In contrast, the over-
all computational complexity of GHT is O(ksnlog(L)).
Thus SVR-GHT gains a significant improvement over GHT
when k¢ and n are large.

(IT) Statistical Theory: We next present the statistical the-
ory of constrained M-estimators obtained by the proposed
SVR-GHT algorithm. Our analysis is applicable to a large
family of statistical learning problems, including general-
ized linear models, low-rank matrix estimation (where the
cardinality constraint would be replaced by a rank con-
straint) and sparse precision matrix estimation. We focus
here on the most popular example: sparse linear regres-
sion, and leave the exploration of other models to future
investigation.

We estimate the unknown sparse regression coefficient vec-
tor w* € RY from a noisy observation vector y € R™ of
linear measurements: y = Aw™* + z, where A € Rnbxd
is a design matrix, and z € R™ ~ N(0,0°I). Here, we
divide A into n submatrices, each of which contains b rows
of A. We denote the i-th submatrix as Ag,., where S; is
the corresponding row indices of A with |S;| = b for all

i =1, ...,n. Then, the corresponding problem is

1
in, Z slls.

=1

—As w3 st |wlo <k (37)
We assume that ||v]|p < s, v € RY, the design matrix A

i max; || Al
satisfies NG <1 and

||A”|| log d
T2 > o3 — o1 e || l2,
(3.8)
|As,cv || logd
2 < olvl3 + o222 |v]13, Vi € [nl,

where 11, 192, 1 and @9 are constants that do not scale
with (n, b, k*, d). Existing literature has shown that (3.8) is
satisfied by many common examples of sub-Gaussian ran-
dom design (Raskutti et al., 2010; Agarwal et al., 2012).
The next lemma shows (3.8) implies RSC and RSS.

Lemma 3.4. Assume that the design matrix A satisfies
(3.8). Given large enough n and b, there exist a constant
C5 and an integer k such that F(w) and {f;(w)}?, sat-
isfy the RSC and RSS conditions with s = 2k + k*, where

k= Csk* > C1r2k*, p; > 11/2, and p < 2¢hs.
Proof Sketch. For any w,w’ € R? in sparse linear model,

we have V2F (w) = AT A and
Flw) = F(w') = (VF(w

) w —w') = 3| A(w —w')3.

By (3.8), if b > % and n > % then we have
nb > 2“”12#. Combining these with (3.8), we have p; >
241, and pJ < 24py. By the definition of &, this indicates
Ks = Zi < 41”2 . Then for some C5 > mi;% we have
k=Cs5k" > Cmik*. O
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See detailed proof in Appendix A. Since Lemma 3.4 guar-
antees that 7 (w) and { f;(w)}?_, satisfy the RSC and RSS
conditions, Theorem 3.3 is applicable to the SVR-GHT al-
gorithm for solving (3.7). This allows us to establish the
following statistical guarantee for the obtained estimator.

Theorem 3.5. Suppose that the design matrix A satisfies
(3.8), and k, n and m are specified as in Theorem 3.3.
Then given a constant 6 € (0, 1), a sufficiently small ac-

curacy € > 0, and large enough n and b, we need at most

F (@)~ F(w")
€d

with high probability, we have

r = {4 log( )-‘ outer iterations such that

&™) — w*|, = O (m/k* log d/(nb)) . (Y9
Proof Sketch. For sparse linear model, we have

VF(w*) = ATz/(nb). Since z has iid. N(0,02%)
entries, then Al z/(nb) ~ N(0,02|A,;||3/(nb)?) for
any j € [d]. Using the Mill’s inequality for tail bounds of
Normal distribution, we have

Alz log d Alz 2/nblogd
P[22 > 25,/logd ) — p = v/nblog
b |~ nb oAz |~ Al

< Al - exp __4nblogd (’<) a4
— 27nnblogd A2 )] = V2rlogd’

N on maxg Al -
where (i) is from the assumption NeTS < 1. Then

with probability at least 1 — ﬁ ~d
V2 () < sIVFa2, = s A2 < ons

When 7 is as specified, s = 2k + k* = (2C5 + 1) k* from
Lemma 3.4 and (3.4) holds from Theorem 3.3, we have

(3.9) with probability at least 1 — § — m -d=% O

See detailed proof in Appendix B. Theorem 3.5 guarantees
that the obtained estimator attains the optimal rate of con-
vergence in parameter estimation (Raskutti et al., 2011), re-
gardless whether n is allowed to scale with (b, k*, d) or not.
In contrast (Nguyen et al., 2014) only considers a fixed n
setting, and shows that the estimator obtained by the SGHT
algorithm only attains O(c+/k* log d/b) with high proba-
bility (See Corollary 5 in (Nguyen et al., 2014)). Hence
their result is suboptimal w.r.t. n, while ours allow n to
scale with (b, k*, d).

4. Main Proof

We first present two key technical lemmas that will be in-
strumental in developing the computational theory for our
proposed algorithm and throughout the rest of the paper.

Lemma 4.1. Let w* € R? be a sparse vector such that
lw*]lo < k*, and Hy(-) : RY — R? be the hard threshold-
ing operator, which keeps the largest k entries (in magni-
tude) and sets the other entries equal to zero. Given k > k*,
for any vector w € R?, we have

2Vk*

R e e

Jllw = w*[3. @)

Proof Sketch. For notational convenience, define w’ =
Hi(w). Let supp(w*) = Z*, supp(w) = Z, supp(w’) =
7', and w” = w — w’ with supp(w”) = Z”. Clearly
we have 7/ UZ" = Z, T’ NT" = 0, and ||w|3 =
||w’[|3 + [Jw"||3. Then we have that

I’ — w3 = |lw — w5 = 2(w"”, w") — [[w"]3.

If 2(w"”, w*) — ||w”||3 < 0, then (4.1) holds naturally. We
will discuss when 2(w”, w*) — ||w”||3 > 0.

Let Z* NZ' = Z*' and Z* N Z"” = T*2, and denote
(’w*)z*l — ,w*l’ (W*)I*Q — ,w*2’ (wl)I*l — ,wl*’ and

(w' )72 = w?*. Then we have that
2(w”,w") — [lw” |3 < 2w, w*?) — [lw*|3
< 2w [faflw* 2 — w3 4.2)
Let [supp(w?*)| = |Z*2| = k** and w2 max = || w**] s,
then consequently we have || w?*||2 = m - w2 max for some
m € [1,Vk**]. Notice that we are interested in 1 < k** <

k*, because (4.1) holds naturally if £** = 0. We consider
three cases to maximize the RHS of (4.2):

Case 1: If [[w*?|l2 < w2 max, then the RHS of (4.2) is

maximized when m = 1, i.e. w?* has only one nonzero
element wy 1.x. By calculation, we have

2 2

[w — w3 — [lw — w3

1
< . 4.
< 43)

[w — w3

Case 2: If womax < [[w*3|2 < VE**w2 max, then the
*2

RHS of (4.2) is maximized when m = U;Zi”’" By calcu-

lation, we have

EES

Sk ko ke

[w" — w3 — |lw — w3

(4.4)
[ — w*||3

Case 3: If ||w*?||2 > Vk**ws3 max, then the RHS of (4.2)
is maximized when m = v/ k**. By calculation, we have

[’ — w*|[5 — [lw — w3

lw — w*[|3
* % 24 /k**
S max { k_k*_l_k**) 2\/[6—]{;*{—%]{**— e } . (45)
We have desired result from (4.3), (4.4) and (4.5). O]

See detailed proof in Appendix C. Lemma 4.1 shows that
the hard thresholding operator is nearly non-expansive
when k is much larger than k* such that \;g is very
small (bounded away from 1).
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Remark 4.2. Though Lemma 4.1 looks similar to Lemma
1 in (Jain et al., 2014), they are essentially different. We
provide a ratio of the distances between w and a k*-sparse
vector w*, before and after hard thresholding operation on
w, which is more intuitive than what is presented in (Jain
et al., 2014) that gives a ratio of the distance between w
and Hy (w), and the distance between w and w*. Besides,
Lemma 4.1 is a also a key property that allow us to tol-
erate a large condition number x4, compared with a small
bounded x in (Nguyen et al., 2014), as long as the hard
thresholding parameter k is large enough.

For notational simplicity, we denote the full gradient and
the stochastic variance reduced gradient by

fi = VF(@) = % S V(@) and
=1
gV (w") = Vi, (w") = Vi, (@) + p.

The next lemma shows that g(*) (w~!) is an unbiased es-
timator of V.F (w'~!) with a well controlled second order
moment over a sparse support.

Lemma 4.3. Suppose that F(w) and all f;(w)’s satisfy
the RSC and RSS conditions with s = 2k + k*. Let w* €
R? be a sparse vector with ||w*||o < k*, T* = supp(w*),
and w(*) be a sparse vector with ||w® ||y < k, T =
supp(w*). Then conditioning on w*), for any Z D (Z* U
Z®), we have E[g™® (w®)] = VF(w®) and
Ellgy” (w)[3 < 120} [Flw®) = F(w") + F(@) — F(w")]
+3|| V. F(w*)]|3. (4.6)

Proof Sketch. It is straightforward that g(*) (w®)) satisfies
Eg")(w®)) = EVf; (w") —EV f;, (@) + g = VF(w®).
For any ¢ € [n] and w with supp(w) C Z, consider

¢i(w) = fi(w) = fi(w") = (Vfi(w"), w — w").
Since V¢, (w*) = Vf;(w*) — Vfi(w*) = 0, we have
¢i(w*) = miny, ¢;(w), which implies

1
0 < ¢i(w) — ﬁ“v@(w)”%a

This further results in
IVzfi(w) = Vzfi(w")|3 < |V fi(w) = V fi(w)[I3
< 2pf [fi(w) = fi(w") = (Vzfi(w), w — w")],
Since the sampling of ¢ from [n] is uniform sampling, this
implies
E|Vzfi(w) = Vzfifw*)[5 = & X0y [V2fi(w) = Vzfi(w”)|3
< 2p] [F(w) = Fw) = (VzF(w"), w — w”)]

< 4pf [Flw) = F(w)], 4.7

By the definition of gg ) , we can verify the second claim as

Elg? (w®)|3
< 3E| [V2fi, (@) — Vzfi, (w*)] - V2F (@) + V1 F(w*)|3
+3E| V1 fi, (wh) = Vrfi, (w3 + 3| V2 F (w*)]3

(i) )
< 3E||Vzfi, (w®) =V fi, (w)|3
+3E(Vzfi, (W) = Vzfi, (w*)[3 + 3| VzF (w")]3.
Then (i) results in (4.6) from (4.7). O]

See detailed proof in Appendix D. When w™ is a global
minimizer, for convex problems, we have VF(w*) = 0
(or the differential of F(w™) contains 0 in composite min-
imization settings). However, we are working on a non-
convex optimization problem without such a convenience.
This eventually results in this additional ||V zF (w*)||3 on
the R.H.S of (4.6), which is different from existing variance
reduction results in (Johnson & Zhang, 2013; Kone¢ny &
Richtarik, 2013; Zhao et al., 2014b).

Remark 4.4. w* can be arbitrary k* sparse vector (1.1) in
our analysis. While in establishing the statistical properties
of the obtained estimator W™, if w* is the true model pa-
rameter, we have the estimate of expected F(w (™)) within
the € + ¢||VzF(w*)||3 distance to the expected F(w*),
which results in that our estimator w (") is within the opti-
mal statistical accuracy to the true model parameter w*.

Now we are ready to provide the proof of Theorem 3.3. We
present the proof as two parts.

Part 1: We first demonstrate (3.3) and (3.4). let v =

w® gl (w®) and T = T*UTOUIHD), where T* =

supp(w*), Z® = supp(w®) and T+ = supp(w D).

Conditioning on w®), we have the following expectation

Ellv — w*[|3 = Ellw® — gl (w®) — w*||3

= Ew® — w*[3 + 7?Ellgy (w®) [ — 2n(w® — w*, Eg?) (w®))

=Bl —w [ + Elgy ()3 - 29w — w*, VrF(w))

<Ellw® —w* |3 + n’Elgy’ (w®)[3 ~ 20 [F(w) - Fw)]

S E[w® — w3 +120°p7 [F(w?) - F(w*) + F(w) — F(w")]
=2 [F(w®) — F(w*)] + 30*| V2.F (w")I3

=E|w® —w*[3 — 2n(1 — 6np}) [F(w) — F(w")]

+1202p [F(w) — F(w*)] + 30° [V F (w*) |3, 4.8)

where the first inequality follows from the RSC condition
(3.2) and the second inequality follows from Lemma 4.3.
Since w(ttl) = u’),itﬂ) = vy, i.e. wD is the best k-
sparse approximation of v, then we have from Lemma 4.1,

. 2Vk* \
Y —w*||2 < (1 + m) v —w*|3. (4.9)
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Letazl—i—\/%

Efw ™Y —w*|3 < oB|lw® —w*||3 + 12an*p} [F(w) — F(w"))

+3an? ||V F (w*)|[3 — 2an(1 = 6np7) [Fw®) — F(w*)] .

(4.10)

Notice that w = w(® = ("=, By summing (4.10) over

t=20,1,...,m — 1 and taking expectation with respect to
all ¢’s, we have

Combining (4.8) and (4.9), we have

- 200me )" g [ 7 (5(0)) — Faw?)]
< amEHIE(T_l) + %EHVI}—(U’*)H%
+ 206" O [F (i) — Flw")]

< 220E [F(@0 V) - Fluw)] + 20 VR (w3

Eflw™ — w3

- w3

1205 @ D (7 (gD - Fw*)], (4.11)
where the last inequality follows from the RSC condition

(3.1) and the definition of Z. It further follows from (4.11),

E[F(w™) — F(w*)] <R [F(w") - F(w*)]
+WHV Fw)|3- (4.12)
where 8 = a”(a-1) 4 Gmel Apply (4.12)

nps (1—6np¥)(am—1) ' 1—6npd "
recursively, we obtain (3.3) when 5 < % < 1.

‘We then demonstrate (3.4). It follows from RSC condition
Flw) < F(@") + (VF(w*), w* - 5")) - 5

4.13)

Let¢ = (3)" [F(@w©) — F(w*)] + m||v =F(w*)|3.

Combining (3.3) and (4.13), we have
E [F(@™) - (] < Flw*)
<E [f(mr)) +(VF(w - w*H;} .

(4.14)

Yow @) - G 50

Using the duality of norms, we have

E(VF(w"),w* — ) < |[VF(w")||<Ellw™ —w*||;
<V VF (") [[ooEl[w™) — w*f2. (4.15)
Combining (4.14), (4.15) and (E[z])? < E[2?], we have

MooBlw™ — w5 + .
(4.16)

Let a = E|[w) — w*||,. From (4.16), we solve the fol-
lowing quadratic function of a,

7@ — Vsl VF(w

which yields the bound (3.4).

5 (E|w") —w*|2)* < V5| VF(w

Moca —¢ <0,

Now we show that with k, n and m specified in the the-
orem, we have the guarantee that 8 < 1 provided appro-
priate choices of constants. More specifically, let n <

w") — w3

Cy 1 6npt 6C: 1

oF < 18+,then we have — oo < 2 <3 I
k>0 Qk* < (3, then we have that
a<l+ \/7 d

2
Q (0‘ 1 VCi—TLrs
nps (1—6npd)(am—1) = B 2\
1-0+ =)™

3

- (4.17)
Co/C7 =1 (1

Then (4.17) is guaranteed to be strictly smaller than 5, 1.e.
B < 1, if we have

2 -m
_(1+ ‘/lel.,ﬂs) )

Co/Ch —
\/Cl 1-kg CQ\/01_1_6

x) > x/2 forx € (0,1), it

m > log, (4.18)

Using the the fact that In(1
follows that

2/Ci—1
log 2 CovOi -1 log02V011 =6
l+m%5 CovCi—1-6 10g1+m
Coyv/Cp — 1
<log ———r—— +/C1 —1:Ks.
=GV 16 VT
Then (4.18) holds if m satisfies
Co/C1 — 1
>log———— - \/C1 — 1Ky
Mo 1 VT

If we choose Cy = 1612, Cy =
222, then we have 8 < Z.

Part 2: Next, we demonstrate (3.5) and (3.6). Let &, &9,
&3, ... be a non-negative sequence of random variables,
which is defined as

&= max{]:(zﬁ(’)) - Flw*) — WHV F(w*)]3, 0} :

1
20,03 = i3 andC4 =

For a fixed ¢ > 0, it follows from (3.3) and Markov in-
EE

equality,
3\" 5 (0)
P >e) < B o (1) [FED)
1> 13

For a given § € (0, 1), let the RHS of (4.19) be no greater
than &, which requires

— F(w")]

. (4.19)

F(w?) — F(w*)
ed '

> ]
T Og( %)
Therefore, we have that if r = [4 log (%ﬂ,

then (3.5) holds with probability at least 1 —9. Finally, (3.6)
holds consequently via combining (3.4) and (3.5).

5. Experiments

We compare the empirical performance of the SVR-GHT
algorithm with two other candidate algorithms: GHT pro-
posed in (Jain et al., 2014) and SGHT proposed in (Nguyen
et al., 2014) on both synthetic data and real data.
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5.1. Simulated Data

We consider a sparse linear regression problem. We gener-
ate each row of the design matrix A;, € R? independently
from NV (0, X). The response vector is generated from the
linear model y = Aw™ + €, where w* € R is the re-
gression coefficient vector, and € € R™ is generated from
N(0,0°I) with 0 = 1. We set nb = 10000, d = 25000,
k* = 200 and kK = 500. For X, we set 3;; = 1 and
3;; = c for some constant ¢ € (0,1) for all ¢ # j. The
nonzero entries in w* are sampled independently from a
uniform distribution over the interval (—2, +2). We divide
10000 samples into n mini batches evenly, and each mini
batch contains b = 10000/n samples.

We compare the performance of GHT, SGHT, and SVR-
GHT for four different settings: (1) (n,b) = (10000, 1),
3;; = 01; 2) (n,b) = (10000,1), X;; = 0.5; (3)
(n,b) = (200,50), 3;; = 0.1; 4) (n,b) = (200, 50),
3i; = 0.5. For simplicity, we choose m = n through-
out our experiments'. Figure 1 illustrates the result of ob-
jective value vs. iterations under settings when (n,b) =
(10000, 1), and results for (n,b) = (200,50) are anal-
ogous. Since the SGHT and SVR-GHT algorithms are
stochastic, we plot the objective values averaged over 50
different runs. We illustrate step sizes n = 1/256,1/512
and 1/1024. The horizontal axis corresponds to the num-
ber of passes over the entire dataset; computing a full gra-
dient is counted as 1 pass, while computing a stochastic
gradient is counted as 1/n-th of a pass. The vertical axis
corresponds to the ratio of current objective value over the
objective value using w(®) = 0. We further provide the
optimal relative estimation error [|w(1%*) — w*||5/|jw* ||
after 10° effective passes of the entire dataset for each set-
ting of three algorithms in Table 1. The optimal estima-
tion error is obtained by averaging over 50 different runs,
each of which is chosen from a sequence of step sizes

ne{1/25,1/26 ... 1/214}.

We see that SVR-GHT uniformly outperforms the other
two candidate algorithms in terms of the convergence rate
under all settings. While GHT also enjoys linear converge
guarantees, its computational complexity within each itera-
tion is n times larger than SVR-GHT; consequently, it per-
formances much worse than SVR-GHT. Besides, we also
see that SGHT converges worse than SVR-GHT in all set-
tings. This is perhaps because the largest eigenvalue of
any 500 by 500 submatrix of the covariance matrix is large
(larger than 50 or 250) such that the underlying design ma-
trix violates the Restricted Isometry Property (RIP). This
might explain the poor performance of SGHT. On the other

"Larger m results in increasing number of effective passes of
the entire dataset required to achieve the same decrease of objec-
tive values, which is also observed in a closed related proximal
gradient method with variance reduction (Xiao & Zhang, 2014)

0 100 200 300

(®) (n,b)2, 1

0.1 01

(©) (n,b)1, X2 (d) (n,b)2, X2

Figure 1. Comparison among three candidate algorithms under
four different settings. We denote 31 : 3;; = 0.1, 35 : 3;; =
0.5, (n,b)1 = (10000,1) and (n,b)2 = (200,50). The hori-
zontal axis is the number of passes over the entire dataset. The
vertical axis is the ratio of current objective value over the objec-
tive value using w® = 0. For each algorithm, option 1, 2 and 3
correspond to 7 = 1/256,1/512 and 1/1024 respectively. It is
evident from the plots that SVR-GHT uniformly outperforms the
other candidate algorithms in terms of the iteration complexity
(over effective passes of data) in all settings.

Table 1. Comparison of optimal relative estimation errors be-
tween the three candidate algorithms under four different set-
tings on simulated data sets. We denote 3; : 3;; = 0.1,
3, X3 = 0.5, (n,b)1 = (10000, 1) and (n,b)2 = (200, 50).
SVR-GHT achieves comparable result with GHT, both of which
uniformly outperforms SGHT in each of the eight settings.

Method GHT | SGHT | SVR-GHT
s, LuD1 | oogsy | 0:02490 | 0.00968
(n,b)s 0.06412 | 0.00970
21 02614

s, L1 | 00040 | 0:21676 | 0026
(n,b)s 0.18764 | 0.02823

hand, the optimal estimation error of SVR-GHT is compa-
rable to GHT, both of which outperform SGHT uniformly,
especially in noisy settings. It is important to note that with
the optimal step size, the estimation of GHT usually be-
comes stable after > 10° passes, while the estimation of
SVR-GHT usually becomes stable within a few dozen to
a few hundred passes, which validates the significant im-
provement of computational cost of SVR-GHT over GHT.

5.2. Real Data

We adopt a subset of RCV1 dataset with 9625 documents
and 29992 distinct words, including the classes of “C15”,
“ECAT”, “GCAT”, and “MCAT” (Cai & He, 2012). We ap-
ply logistic regression to perform binary classification for
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Figure 2. Comparison among the three candidate algorithms un-
der two different settings on the RCV1 data set for class C15,
ECAT, GCAT and MCAT. The horizontal axis corresponds to the
number of passes over the entire dataset. The vertical axis cor-
responds to misclassification rate on the test data. It is evident
from the plots that SVR-GHT uniformly outperforms the other
candidate algorithms in both settings.

all classes, each of which uses 5000 documents for train-
ing, i.e., nb = 5000 and d = 29992, with the same propor-
tion of documents from each class, and the rest for testing.
We illustrates the computational performance of the GHT,
SGHT, and SVR-GHT algorithms with two different set-
tings for each class: Setting (1) has (n,b) = (5000, 1);
Setting (2) has (n,b) = (100,50). We choose k = 200
and m = n for both settings of all classes. For all three
algorithms, we plot their objective values and provide the
optimal classification errors averaged over 10 different runs
using different data separations. Figure 2 demonstrates the
result for “C15”, and the other classes have analogous per-
formance. Similar to the synthetic numerical evaluations,
SVR-GHT uniformly outperforms the other two candidate
algorithms in terms of the convergence rate under both set-
tings. We provide the optimal misclassification rates of all
classes for three algorithms in Table 2, where the optimal
step size n for each algorithm is chosen from a sequence
of values {1/25,1/26 ... 1/214}.. Similar to the simu-
lated data sets again, the optimal misclassification rate of
SVR-GHT is comparable to GHT, both of which outper-
form SGHT uniformly. The estimation of GHT generally
requires > 10° passes to become stable, while the estima-
tion of SVR-GHT generally requires a few hundred to a
few thousand passes to be stable, which validates the sig-
nificant improvement of computational cost of SVR-GHT
over GHT for this real dataset.

6. Discussion

The SVR-GHT algorithm presented in this paper is closely
related to some recent work on stochastic optimization al-
gorithms, including Prox-SVRG algorithm (Xiao & Zhang,
2014), stochastic averaging gradient (SAG) algorithm
(Roux et al., 2012) and stochastic dual coordinate ascent al-
gorithm (SDCA, (Shalev-Shwartz & Zhang, 2013)). How-
ever, the focus in these previous works has been on es-
tablishing global linear convergence for optimization prob-
lems involving strongly convex objective with a convex

Table 2. Comparison of optimal classification errors among the
three candidate algorithms for both settings of all four classes. We
denote (n,b)1 = (5000, 1) and (n,b)2 = (100,50). SVR-GHT
achieves comparable result with GHT, both of which uniformly
outperforms SGHT in all settings.

Method GHT | SGHT | SVR-GHT
c1s L0101 | o gogaq | 0:03259 [ 0.02826
(n,b)2 0.03361 | 0.02867
soar L | o occo [ 0.06851 | 005628
(n,b)2 0.07179 | 0.05631
(n,b)1 0.06263 | 0.03354
GCAT 0.03028
(n,b)2 0.09142 | 0.03444
MCAT | (801 | o 05703 | 007638 [ 0.05877
(n,b)2 0.08228 | 0.05927

constraint, whereas SVR-GHT guarantees linear conver-
gence for optimization problems involving a nonstrongly
convex objective with nonconvex cardinality constraint.

Other related work includes nonconvex regularized M-
estimators proposed by (Loh & Wainwright, 2013). In par-
ticular, they consider the nonconvex optimization problem:

n}li)n F(w) + Pr~(w) st [w]i1 <R, 6.1)
where P, -, (w) is a nonconvex regularization function with
tuning parameters A and +y; Popular choices for Py ,(w)
are the SCAD (Fan & Li, 2001) and MCP (Zhang, 2010)
regularization functions. (Loh & Wainwright, 2013) show
that under restricted strong convexity and restricted strong
smoothness conditions, similar to those studied here, the
proximal gradient algorithm attains linear convergence to
approximate global optima with optimal estimation accu-
racy. Accordingly, one could adopt the Prox-SVRG algo-
rithm to solve (6.1) in a stochastic fashion, and trim the
analyses in (Xiao & Zhang, 2014) and (Loh & Wainwright,
2013) to establish similar convergence guarantees. We re-
mark, however, that Problem (6.1) involves three tuning pa-
rameters, J, 7y, and R which, in practice, requires enormous
tuning effort to attain good empirical performance. In con-
trast, Problem (1.1) involves a single tuning parameter, k,
which makes tuning more efficient.

Acknowledgements

This research is supported by NSF CCF-1217751; NSF
AST-1247885; DARPA Young Faculty Award N66001-
14-1-4047; NSF DMS-1454377-CAREER; NSF IIS-
1546482-BIGDATA; NIH RO1MHI102339; NSF IIS-
1408910; NSF I1S-1332109; NIH RO1GMO083084.



Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

References

Agarwal, Alekh, Negahban, Sahand, and Wainwright, Mar-
tin J. Fast global convergence of gradient methods for high-
dimensional statistical recovery. Ann. Statist., 40(5):2452—
2482, 2012.

Banerjee, Onureena, El Ghaoui, Laurent, and d’Aspremont,
Alexandre. Model selection through sparse maximum likeli-
hood estimation for multivariate gaussian or binary data. The
Journal of Machine Learning Research, 9:485-516, 2008.

Blumensath, Thomas and Davies, Mike E. Iterative hard thresh-
olding for compressed sensing. Appl. Comp. Harm. Anal., 277
(3):594-607, 2009.

Cai, Deng and He, Xiaofei. Manifold adaptive experimental de-
sign for text categorization. Knowledge and Data Engineering,
IEEE Transactions on, 24(4):707-719, 2012.

Fan, Jianqing and Li, Runze. Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal of the
American statistical Association, 96(456):1348-1360, 2001.

Foucart, Simon. Hard thresholding pursuit: An algorithm for
compressive sensing. SIAM J. Numer. Anal., 49(6):2543-2563,
2011.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. Sparse
inverse covariance estimation with the graphical lasso. Bio-
statistics, 9(3):432-441, 2008.

Jain, Prateek, Tewari, Ambuj, and Kar, Purushottam. On iterative
hard thresholding methods for high-dimensional m-estimation.
In NIPS, pp. 685-693. 2014.

Johnson, Rie and Zhang, Tong. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS, pp. 315—
323.2013.

Kone¢ny, Jakub and Richtdrik, Peter. Semi-stochastic gradient
descent methods. arXiv preprint arXiv:1312.1666, 2013.

Loh, Po-Ling and Wainwright, Martin J.  Regularized M-
estimators with nonconvexity: Statistical and algorithmic the-
ory for local optima. In Advances in Neural Information Pro-
cessing Systems, pp. 476-484, 2013.

Natarajan, Balas Kausik. Sparse approximate solutions to linear
systems. SIAM journal on computing, 24(2):227-234, 1995.

Nesterov, Yu. Gradient methods for minimizing composite func-
tions. Mathematical Programming, 140(1):125-161, 2013.

Nguyen, Nam, Needell, Deanna, and Woolf, Tina. Linear con-
vergence of stochastic iterative greedy algorithms with sparse
constraints. arXiv preprint arXiv:1407.0088, 2014.

Raskutti, Garvesh, Wainwright, Martin J, and Yu, Bin. Restricted
eigenvalue properties for correlated gaussian designs. The
Journal of Machine Learning Research, 11:2241-2259, 2010.

Raskutti, Garvesh, Wainwright, Martin J, and Yu, Bin. Mini-
max rates of estimation for high-dimensional linear regression
over-balls. Information Theory, IEEE Transactions on, 57(10):
6976-6994, 2011.

Roux, Nicolas L., Schmidt, Mark, and Bach, Francis R. A
stochastic gradient method with an exponential convergence
rate for finite training sets. In NIPS, pp. 2663-2671. 2012.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual coordi-
nate ascent methods for regularized loss. JMLR, 14(1):567-
599, 2013.

Shen, Xiaotong, Pan, Wei, and Zhu, Yunzhang. Likelihood-based
selection and sharp parameter estimation. Journal of the Amer-
ican Statistical Association, 107(497):223-232, 2012.

Tibshirani, Robert. Regression shrinkage and selection via the
lasso.  Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267-288, 1996.

Van de Geer, Sara A. High-dimensional generalized linear models
and the lasso. The Annals of Statistics, pp. 614-645, 2008.

Xiao, Lin and Zhang, Tong. A proximal stochastic gradient
method with progressive variance reduction. SIAM J. Opti-
mization, 24(4):2057-2075, 2014.

Yuan, Ming and Lin, Yi. Model selection and estimation in re-
gression with grouped variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 68(1):49-67,
2006.

Yuan, Xiao-Tong, Li, Ping, and Zhang, Tong. Gradient hard
thresholding pursuit for sparsity-constrained optimization. In
ICML, pp. 71-79. 2013.

Zhang, Cun-Hui. Nearly unbiased variable selection under min-
imax concave penalty. The Annals of Statistics, pp. 894-942,
2010.

Zhao, Tuo and Liu, Han. Accelerated path-following iterative
shrinkage thresholding algorithm with application to semipara-
metric graph estimation. Journal of Computational and Graph-
ical Statistics, 2016. To appear.

Zhao, Tuo, Liu, Han, and Zhang, Tong. A general theory of path-
wise coordinate optimization. arXiv preprint arXiv:1412.7477,
2014a.

Zhao, Tuo, Yu, Mo, Wang, Yiming, Arora, Raman, and Liu, Han.
Accelerated mini-batch randomized block coordinate descent
method. In Advances in neural information processing systems,
pp. 3329-3337, 2014b.





