Skip to main content

Stability of metal-rich very massive stars

Author(s): Goodman, Jeremy J.; White, Christopher J

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1tj02
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoodman, Jeremy J.-
dc.contributor.authorWhite, Christopher J-
dc.date.accessioned2019-08-05T17:46:55Z-
dc.date.available2019-08-05T17:46:55Z-
dc.date.issued2016-02-11en_US
dc.identifier.citationGoodman, J, White, Christopher J. (2016). Stability of metal-rich very massive stars. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 456 (525 - 537. doi:10.1093/mnras/stv2694en_US
dc.identifier.issn0035-8711-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1tj02-
dc.description.abstractWe revisit the stability of very massive non-rotating main-sequence stars at solar metallicity, with the goal of understanding whether radial pulsations set a physical upper limit to stellar mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully non-adiabatic method. Models above 100 M-circle dot have extended tenuous atmospheres (’shelves’) that affect the stability of the fundamental. Even when positive, this growth rate is small, in agreement with previous results. We argue that small growth rates lead to saturation at small amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated involving non-linear parametric coupling to short-wavelength g-modes and the damping of the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange modes. This also agrees with previous results but is extended here to higher masses. The strange modes probably saturate via shocks rather than mode coupling but have very small amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by some combination of radiation pressure, transonic convection, and strange modes, are more likely than pulsation in the fundamental mode to limit the main-sequence lifetime.en_US
dc.format.extent525 - 537en_US
dc.language.isoen_USen_US
dc.relationhttp://simbad.u-strasbg.fr/simbad/sim-ref?querymethod=bib&simbo=on&submit=submit+bibcode&bibcode=2016MNRAS.456..525Gen_US
dc.relation.ispartofMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleStability of metal-rich very massive starsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/mnras/stv2694-
dc.date.eissued2015-12-15en_US
dc.identifier.eissn1365-2966-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
stv2694.pdf694.54 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.