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ABSTRACT
We revisit the stability of very massive non-rotating main-sequence stars at solar metallicity,
with the goal of understanding whether radial pulsations set a physical upper limit to stellar
mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear
stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully
non-adiabatic method. Models above 100 M� have extended tenuous atmospheres (‘shelves’)
that affect the stability of the fundamental. Even when positive, this growth rate is small, in
agreement with previous results. We argue that small growth rates lead to saturation at small
amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated
involving non-linear parametric coupling to short-wavelength g-modes and the damping of
the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange
modes. This also agrees with previous results but is extended here to higher masses. The
strange modes probably saturate via shocks rather than mode coupling but have very small
amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models
are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by
some combination of radiation pressure, transonic convection, and strange modes, are more
likely than pulsation in the fundamental mode to limit the main-sequence lifetime.
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1 IN T RO D U C T I O N

The threshold of hydrogen burning (≈0.08 M�) is generally ac-
cepted as a physical lower limit to the masses of stars, one that
is independent of the environment in which stars form. Whether
there is a definite upper limit to stellar masses, and to what ex-
tent the limit may depend on nature (stellar physics) or nurture
(star-forming environment) are open questions. The highest well-
measured dynamical masses are ∼80 M� (Schnurr 2012), most
notably the double-lined eclipsing binary WR 20a (Bonanos et al.
2004; Rauw et al. 2004). Statistics of stars in galactic open clus-
ters have been interpreted as evidence for an upper limit ∼150 M�
(Weidner & Kroupa 2004; Figer 2005; Oey & Clarke 2005; Koen
2006), while Crowther et al. (2010) present spectroscopic arguments
for larger masses among the stars in the cluster R136 of the Large
Magellanic Cloud. An empirical mass limit, if such exists, may
reflect the environment in which most stars are observed to form:
that is to say, molecular clouds, where the density of hydrogen nu-
clei is typically n � 103 cm−3, the temperature �100 K, and dust
is abundant.

One of us has previously argued that the broad-line regions of
bright quasi-stellar object (QSO) accretion discs are likely self-
gravitating and prone to form very massive stars – at least several
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hundred solar masses at the onset of gravitational instability, and
perhaps �105 M� after accretion up to the isolation mass (Good-
man & Tan 2004; Jiang & Goodman 2011). A QSO disc at ∼103

gravitational radii from the black hole is a very different environ-
ment from a molecular cloud: denser by many orders of magnitude,
hotter than the sublimation temperature of dust, rapidly rotating and
shearing, and dominated by radiation pressure rather than gas pres-
sure. Hence a different initial mass function and maximum stellar
mass might result in such discs than in giant molecular clouds. On
the other hand, it is well known that very massive stars are frag-
ile due to the predominance of radiation over gas pressure, radia-
tively driven winds, and pulsational instabilities. Thus it is possible
that internal physics establishes an upper limit �102–103 M�. A
presumably fatal relativistic instability sets in above 105–106 M�,
depending upon internal rotation (Chandrasekhar 1964; Baumgarte
& Shapiro 1999; Montero, Janka & Müller 2012, and references
therein). This leaves a gap of several orders of magnitude above the
largest observed masses, however.

In the present paper, we return to the question of pulsational
instabilities driven by the κ- and ε-mechanisms, which are sensitive
to composition via opacities and to nuclear reaction rates. This
is a problem that has been considered by many authors since the
original work by Schwarzschild & Härm (1959), and one might
have thought it a closed subject. However, the understanding of
the opacities and other microphysical inputs has evolved, while the
effects of convection on the linear growth rates remain uncertain,
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as do the mechanisms responsible for non-linear saturation of the
pulsations if they grow at all.

We focus on the fundamental radial mode, on the assumption that
it is most dangerous. Glatzel & Kiriakidis (1993, hereafter GK93)
have analysed the stability of solar metallicity stars up to 120 M�
and found a host of higher order modes that grow more quickly
than the fundamental. However, the energies of these modes are
concentrated in the outer parts of the star, so that they can be ex-
pected to reach non-linear amplitudes before the bulk of the mass
is much affected. The fundamental involves the entire star. Its char-
acter and scaling with mass are unlike those of other modes. The
pulsation period increases ∝ M1/2, whereas those of higher order
radial modes scale ∝ M1/4. This is due to the predominance of radia-
tion pressure, Prad/Pgas ∝ M1/2 for M � 100 M�, which makes very
massive non-rotating stars almost neutrally stable against changes
in radius even in the adiabatic approximation. Thus at large ampli-
tudes (δr/r � 1), the fundamental mode might disrupt or collapse
the entire star. The former requires unbinding the star which be-
comes less difficult with increasing mass because of the predomi-
nance of radiation pressure and the attendant near-cancellation of
gravitational and potential energies in hydrostatic equilibrium. (In-
deed, spontaneous disruptions occurred in the simulations of AGN
disc fragmentation by Jiang & Goodman 2011, though they were
caused by numerical energy errors rather than pulsations.) Collapse
might occur under extreme compression due to electron–positron
pairs at central temperatures approaching 109 K, or due to rela-
tivistic corrections to gravity at masses >104 M� (Zeldovich &
Novikov 1971).

Recently, Shiode, Quataert & Arras (2012, hereafter SQA) have
revisited the ε-mechanism. Applying a quasi-adiabatic analysis to
equilibrium models constructed with the MESA code (Paxton et al.
2011, 2013), they concluded that the instability is suppressed by
the effective viscosity due to turbulent convection, at least for stars
of masses �1000 M�. However, they did not consider any models
above 100 M� with solar or higher metallicity. Since QSO discs ap-
pear to be metal rich, with metallicities perhaps up to 10 times solar
(Hamann & Ferland 1999; Dietrich et al. 2003; Matsuoka et al. 2011;
Dhanda Batra & Baldwin 2014), one motivation for the present work
was to repeat SQA’s analysis at higher metallicities and masses
>102 M�. We also wanted to perform a fully non-adiabatic rather
than quasi-adiabatic analysis. This is arguably less important for
the ε-mechanism because it is driven deep within the star where the
thermal time is very long. However, SQA also found evidence for
instabilities driven by opacity variations in the envelope which they
did not fully explore, perhaps because they had less confidence in
the quasi-adiabatic approximation for those modes. Also, at least
with modern opacities, the envelopes of high-mass stellar models at
solar metallicity differ strikingly from those of corresponding Popu-
lation III models, and this has interesting consequences for the mode
structures.

Linear stability analysis is only a first step towards answering
the question posed above. If instabilities are found, one must con-
sider how they may saturate in order to decide whether they are
likely to shorten the main-sequence lifetime. Early attempts to ad-
dress the saturation of instabilities driven by the ε-mechanism gave
conflicting results (Appenzeller 1970; Papaloizou 1973b), but lit-
tle work has been done along these lines in recent decades. We
will argue that even if the uncertain damping effects of convec-
tion are neglected, the linear growth rates are so small compared
to the real part of the pulsation frequency that the pulsations will
saturate by one or another weakly non-linear mechanism at small
amplitudes that do not threaten the survival of these stars, at least

Table 1. Basic properties of our ZAMS models.

M/M� L/L� R/R� Teff (K) Xc

10.0 5.118 × 103 3.922 24 688 0.727
21.5 4.841 × 104 5.998 34 983 0.727
46.4 2.962 × 105 9.279 44 236 0.727
100 1.244 × 106 15.27 49 360 0.729
215 4.054 × 106 30.88 46 638 0.726
464 1.135 × 107 75.29 38 635 0.728
938 2.686 × 107 274.3 25 106 0.727

not before they have lived out most of the nominal minimum main-
sequence lifetime (∼3 × 106 yr). Instead, in view of the structure
of our hydrostatic models, as well as a recent body of work on
Wolf–Rayet and O-star winds, radiatively driven mass loss seems
more likely than pulsational instabilities to limit the lifetimes of the
most massive metal-rich stars. We hope to explore the scaling of
the mass-loss time-scale (i.e. |M/Ṁ|) with stellar mass in a future
paper.

The outline of this paper is as follows. Section 2, supplemented by
Appendix A, presents the equilibrium MESA models and our methods
for the linear stability analysis. Section 3 highlights the extended
atmosphere or ‘shelf’ seen in the higher mass models. Results for
the growth rates and eigenfunction of the fundamental are given in
Section 4, with particular emphasis on non-adiabatic effects in the
shelf. GK93’s intrinsically non-adiabatic ‘strange modes’ are shown
to extend to higher masses, where they have longer periods than the
fundamental. Section 5 examines non-linear saturation of the fun-
damental through three-mode or parametric coupling to high-order
non-radial g-modes, and (more briefly) saturation of strange modes
in shocks. Since the stably stratified zones of our most massive
models are relatively small, and would perhaps disappear entirely
at some higher mass, the explicit estimates in Section 5 are in-
tended to be illustrative of a larger class of weak non-linearities that
will limit the amplitude of the fundamental when its growth rate
is small. A summary of our conclusions and a discussion of future
steps follows in Section 6.

2 M E T H O D

2.1 Equilibrium models and initial estimates

Like SQA, we generated zero-age main sequence (ZAMS) stellar
models using the stellar evolution code MESA. Here we highlight the
configuration settings used when they deviate from the defaults.

The initial mass is specified, with initial abundances (X, Y, Z) =
(0.73, 0.25, 0.02). The simulation begins in the pre-main-sequence
phase at a large radius and low central temperature. The atmo-
sphere is modelled as a ‘simple photosphere’. Convective mixing
is implemented following Henyey, Vardya & Bodenheimer (1965)
in regions determined to be convectively unstable by the Ledoux
criterion.

The star is evolved until it is determined to lie on the main se-
quence, defined by the minimum photospheric radius. (MESA has
its own way of deciding when the model has reached the main se-
quence, but we found its decisions unreliable for our higher mass
models.) The nuclear and photospheric luminosities are then in equi-
librium, and the central hydrogen abundance is only very slightly
depleted. Table 1 lists some properties of the models, which are
similar to those of GK93 (within 5 per cent in L and 1 per cent in
Teff), except that theirs were limited to 40–120 M�. The effective

MNRAS 456, 525–537 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/456/1/525/1070899 by Princeton U
niversity user on 31 M

ay 2019



Stability of metal-rich massive stars 527

Figure 1. Luminosity (star symbols, left-hand scale) and photospheric ra-
dius (circles, right-hand scale) versus stellar mass for our MESA models. Thin
solid line is the Eddington limit for this composition (Y = 0.25, Z = 0.02).
Thin dashed line shows R ∝ M1/2, as would be expected for homologous
radiation-pressure-dominated models.

temperature peaks at 4.95 × 104 K near 120 M�: more massive
are cooler because of their distended atmospheric ‘shelves’ driven
by iron opacities (Section 3). Luminosities and radii for additional
models are shown in Fig. 1.

Once the star has reached its ZAMS phase, the model is saved
and the data are analysed with the ADIPLS package (Christensen-
Dalsgaard 2008), which computes adiabatic pulsational modes
given one-dimensional stellar models. The output from ADIPLS is
a set of eigenfrequencies and corresponding mode shapes in the
form of radial displacements from equilibrium. We use these out-
puts in our own routine, which finds mode frequencies and shapes
without the adiabatic assumption. We turn to this method now.

2.2 Non-adiabatic analysis

For the purpose of analysing the pulsational modes in a non-
adiabatic framework, we began by adopting the method outlined
in Castor (1971), with mass fraction as the independent variable,
and a Henyey-type relaxation scheme for finding the eigenfrequen-
cies. Despite extensive efforts and algorithmic variations, this did
not give numerically stable results for the growth rate of the fun-
damental mode, possibly because of the many orders of magnitude
separating the dynamical and thermal time-scales in the core, and the
enormous radial variation in the ratio of these time-scales through
the star.

We therefore adopted a sort of shooting method designed for
very stiff equations (Appendix A). The basic linearized equations
are

∂

∂r
δPgas = ρ

[
ω2δr + grad

(
δκ

κ
+ δLrad

Lrad

)
+ 4geff

δr

r

]
, (1a)

r−2 ∂

∂r
(r2δr) = − δρ

ρ
, (1b)

∂

∂r
δPrad = −ρgrad

(
δκ

κ
+ δLrad

Lrad
− 4

δr

r

)
, (1c)

∂

∂r
δL = iω4πr2ρT δS + 4πr2ρ

δε

ε
. (1d)

Here grad = κLrad/4πr2c is the radiative force per unit mass,
geff = GMr/r2 − grad is the residual between the gravitational
and radiative accelerations, δ represents Lagrangian perturbation
(first-order variation at fixed interior mass), and all other sym-
bols have their usual meaning. We define dimensionless linearized
variables

y0 ≡ δr

r
, y1 ≡ δρ

ρ
, y2 ≡ δT

T
, y3 ≡ δLrad

L
. (2)

Notice that L not Lrad appears in the denominator of y3.
In principle δL = δLrad + δLconv. However, since there is no

generally accepted prescription for time-dependent convective lu-
minosity – especially in the radiation-pressure-dominated regime –
we adopt δLconv = 0 (‘frozen convection’). Nor have we allowed
for a turbulent convective viscosity in the linearized momentum
equation (1a).

Then in terms of our dimensionless variables, with primes
for d/dr and writing f ≡ Lrad/L, κT = (∂ ln κ/∂ ln T )ρ , κρ =
(∂ ln κ/∂ ln ρ)T , and similarly for εT and ερ , equations (1)
become

ry ′
0 = −3y0 − y1, (3a)

y ′
1 + y ′

2 = ρ

Pgas
[ω2ry0 + grad(κρy1 + κT y2 + f −1y3)

+ geff (4y0 + y1 + y2)], (3b)

y ′
2 = −ρgrad

4Prad
[κρy1 + κT y2 + f −1y3 − 4y0 − 4y2], (3c)

ry ′
3 = 4πr3ρ

L
{iωCV T [y2 − (�3 − 1)y1]

+ ε(ερy1 + εT y2 − y3)}. (3d)

The system of equations is closed by choosing four boundary
conditions. Physically, one expects δr = δL = δLrad = 0 at r = 0.
This does not require y0 or y3 to vanish at the centre, but from the
first of equations (3), one sees that non-singular behaviour requires

3y0 + y1 → 0 as r → 0. (4)

Similarly, regularity of the last of equations (3) implies

iωCV T

ε
[y2 − (�3 − 1)y1] + ερy1 + εT y2 − y3 → 0 as r → 0.

(5)

The factor in front of the square brackets is ∼tKH/tdyn 
 1 if
ω ∼ t−1

dyn, so to a first approximation the behaviour near the origin
is adiabatic, δ ln T ≈ (�3 − 1)δ ln ρ. But since we are interested in
growth or decay rates ωI ∼ t−1

KH, we use equation (5) as written.
The outer heat equation requires a more general analysis than

is given by Castor, as the equations in that work only hold under
the assumption that radiation pressure is negligible compared to
gas pressure at the outer boundary. This condition clearly does not
hold for very massive stars. We therefore turn to the equation for
radiation pressure in the Eddington approximation:

Prad = F

c

(
τ + 2

3

)
,

where F is the radiative flux and τ is the optical depth at the location
being considered. In more familiar variables,

Prad = Lrad

4πr2c

(
κ
m

4πr2
+ 2

3

)
, (6)
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where 
m is the mass exterior to the point being considered, if the
density scale height is �r. Linearizing yields

δPrad

Prad
= δLrad

L
− 4

(
τ + 1/3

τ + 2/3

)
δr

r
+

(
τ

τ + 2/3

)
δκ

κ
,

or in dimensionless variables,

−4

(
τ + 1

3

)
y0 + τκρy1 + τκT y2 +

(
τ + 2

3

)
(y3 − 4y2) = 0.

(7)

We replace Lrad with L here because in practice the model extends
far enough into the tenuous atmosphere as to make the contribution
of Lconv negligible.

The outer momentum equation is closed as follows. The total
pressure at a point near the surface, under a mass 
m and at a
radius r, is

P = 
m

4π

(
r̈

r2
+ GM

r4

)
+ L

6πcr2
, (8)

if the mass shell 
m is thin and effectively hydrostatic in its accel-
erated frame. The last term in equation (8) is the radiation pressure
extrapolated to the outer surface of the shell, where τ = 0. Subtract-
ing equation (6) from equation (8) yields

Pgas = 
m

4π

(
r̈

r2
+ GM

r4
− κLrad

4πr4c

)
. (9)

Perturbing this yields

δPgas

Pgas
= − δr

r

(
4 + ω2r3

βGM

)
− 1 − β

β

(
δL

L
+ δκ

κ

)
,

or equivalently,(
4 + ω2R3

βGM

)
y0 + 1 − β

β
(y3 + κρy1 + κT y2)

− y1 − y2 = 0, (10)

where β is defined in terms of the Eddington luminosity LEdd =
4πGMc/κ by L = (1 − β)LEdd.

3 TH E S H E L F

When MESA evolves massive stars with non-negligible metallicity,
it generically produces an extended envelope outside the polytropic
core of the star, as shown in Fig. 2. This extremely diffuse re-
gion, which is incipient in the 46 M� model but prominent in
those above 100 M�, occupies a progressively larger fraction of
the star’s radius but a minute fraction of its mass (
Mshelf ≈ 3 ×
10−6M for the 938 M� model). It is overwhelmingly dominated
by radiation pressure, much more so than the stellar core. Because
of its slowly radially varying temperature and density, we call this
region the ‘shelf’, although the density profile is actually inverted
in its outermost part (Fig. 2). The opacity in the shelf rises above
the electron-scattering value. Since hydrostatic equilibrium limits
the radiative part of the luminosity to the value that just balances
gravity, Lrad = 4πGM∗c/κ(ρ, T ), and since the luminosity is near-
Eddington, the balance of the luminosity (up to half, in our most
massive model) is carried by inefficient convection that approaches
the adiabatic sound speed, i.e. the sound speed based on total rather
than gas pressure. A similar shelf has been observed in models of
Wolf–Rayet stars and attributed to a bump in the iron opacity at
temperatures ∼1–2 × 105 K (Gräfener, Owocki & Vink 2012, and
references therein).

Figure 2. Density (solid line, left-hand ordinate) and temperature (dashed
line, right-hand ordinate) in our 938 M� model. Grey shading indicates
convective regions. Dot–dashed line is the density profile of an n = 3
polytrope scaled according to equation (9) of Goodman & Tan (2004).

Figure 3. Left-hand axis, red curve: fraction of luminosity carried by radia-
tive diffusion in the 938 M� model. Right-hand axis, blue curve: Bernoulli
‘constant’ normalized by mass and radius at the base of the shelf.

MESA uses OPAL radiative opacities (Iglesias & Rogers 1996) in
the density and temperature regime relevant to the shelf. We employ
the so-called Type 1 opacities (carbon and oxygen abundances not
determined independent of metallicity) with ‘solar’ relative abun-
dances as defined by Grevesse & Noels (1993). See Paxton et al.
(2011), section 4.3, for more details.

In fact, the shelf might be replaced by a radiatively driven wind
if the constraint of hydrostatic equilibrium were relaxed. This is
suggested by the fact that the Bernoulli ‘constant’

B = u + 1

2
v2 + P

ρ
+ � (11)

becomes positive in the lower part of the shelf (Fig. 3), though it
changes sign once more in the outer convective regions. Here u is
the internal energy per unit mass, and v is the mean radial velocity,
which of course vanishes in these hydrostatic models, and �(r) is
the gravitational potential, defined to vanish as r → ∞. The kinetic
energy of the convection would further increase B. These regions
being strongly non-adiabatic, however, B > 0 does not guarantee a
successful wind.
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Figure 4. Plot of the lowest frequency adiabatic modes for the 464 M�
model. The curves show the square root of the mode kinetic energy per unit
length, normalized independently. The modes have radial mode number n
equal to 1 (red), 2 (orange), 3 (green), 4 (cyan), 5 (blue), 6 (magenta), or 7
(black), only the latter of which is not evanescent in the core.

For a precise definition of the base of the shelf, we use the radius
or mass fraction corresponding to the local minimum in the pressure
scale height, HP. For the model shown in Fig. 2, this is Rshelf =
46.3 R�. Within our suite of models, such a minimum occurs only
for M � 50 M�.

4 R ESULTS

4.1 Adiabatic calculations

First we describe the results obtained using ADIPLS. The seven low-
est frequency modes for our 464 M� model are shown in Fig. 4.
Weighting the displacement δr by ρ1/2r shows where the energy of
the mode is concentrated, in that ω2 times the integral of the square
of the plotted quantity gives the total energy.

Of particular note is that the first six modes discovered by ADIPLS

are trapped in the shelf. The seventh mode is the true fundamen-
tal: its energy is concentrated in the core, where it has no nodes
other than the centre, and it has an antinode at the base of the shelf
(see Section 3). Some readers may object to our use of the term
‘fundamental’ for a mode that has multiple radial nodes. The adia-
batic linearized problem is of Sturm–Liouville type, with orthogo-
nal eigenfunctions having interleaved nodes. But the non-adiabatic
problem is quite different. As Fig. 5 and Table 2 illustrate, the adia-
batic and non-adiabatic versions of the fundamental (as we define it)
are very similar – and both nodeless – in the core, and have nearly
equal real parts of their eigenfrequencies, but can have different
numbers of nodes in the shelf (11 and eight, respectively, for the
real parts of the eigenfunctions shown in Fig. 5). Thus classifica-
tion on the basis of numbers of nodes is not helpful in establishing a
correspondence between the adiabatic and non-adiabatic eigenfunc-
tions. Perhaps some other term such as ‘basic’ could be substituted
for ‘fundamental’, but we feel that the latter is physically justified
in this application.

ADIPLS also reports the frequencies of these modes, which are
of course real in the adiabatic approximation. The corresponding
periods, 2π/ω, of the fundamental modes differ only in the third or

Figure 5. Fundamental radial mode at 938 M�. Thin blue line: adiabatic
displacement eigenfunction. Red lines: real (solid) and imaginary (dashed)
parts of the fully non-adiabatic displacement eigenfunction. Eigenfunctions
are not multiplied by r2ρ1/2, in order to emphasize behaviour in the shelf
(r > 46 R�).

Table 2. Periods and growth rates of fundamental radial mode. Negative
growth rates indicate stability. Note 1 Md ≡ 106 d.

M Period Growth rate (Md−1)
(M�) (d) ε κ Total Convec. No shelf

10 0.0905 −22.4 41.0 41.1 41.1 –
21.5 0.1391 −6.94 −10.3 −9.64 −9.68 –
46.4 0.2172 −3.01 −7.93 −6.33 −6.50 –
100 0.3279 −3.12 −2.37 +0.44 0.015 −1.73
215 0.4947 −19.5 −5.15 +9.28 8.45 +1.22
464 0.7253 −5.49 −11.1 −5.92 −7.19 +3.26
938 1.0435 −9.87 −15.5 −10.6 −11.9 +3.69

fourth significant digit from the values shown in the second column
of Table 2 for the fully non-adiabatic fundamental modes.

4.2 Non-adiabatic calculations

In the linear equations, non-adiabaticity arises from two primary
mechanisms. The nuclear heating rate per unit mass, ε, is sensitive
to density and even more so to temperature. The strongly positive
value of the logarithmic temperature derivative εT (≈12 near the
centre of the 938 M� model) tends to add entropy during the com-
pressive phase of the pulsation cycle when δT > 0, thus producing
mechanical work. This is the classic ε-mechanism. The entropy of
mass elements varies also by radiative diffusion. This occurs in the
linear analysis even if the opacity is constant, due to perturbations in
the temperature gradient, but instability by the κ-mechanism gen-
erally requires that κT > 0 in regions of the star where the local
thermal time tth ≡ L−1CVHPdMr/dr is comparable to the pulsation
period (e.g. Cox 1980). Convection may tend to stabilize pulsa-
tions by providing an effective viscosity, but as discussed by SQA
and references therein, the viscous effect is thought to be suppressed
when the convective turnover time is long compared to the pulsation
period. It is also possible for convection to drive instability when
it adjusts rapidly to the changing superadiabatic gradient (Brickhill
1991). Except for a quasi-adiabatic estimate along the lines of SQA,
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530 J. Goodman and C. J. White

we have generally neglected these convective effects, even though
these stars are in fact largely convective.

When applying the numerics described in Section 2.2, we are
free to set any of εT, ερ , κT, and κρ to zero throughout the model.
In this way we can separate the two effects. Thus the third column
of Table 2 lists the growth rates obtained when the derivatives of κ

are neglected, and similarly the fourth column gives the rates when
the derivatives of ε are set to zero, while the fifth column retains all
derivatives.

The effects of the non-adiabatic mechanisms on the growth rate
are not entirely additive, as they would be in the quasi-adiabatic ap-
proximation. This is because the opacity derivatives have a substan-
tial effect on the shape of the eigenfunction near the photosphere
(or in the shelf), which is also the region mainly responsible for
driving or damping. However, the ε-mechanism does appear to be
additive, as might be expected since it acts only in the core where
the quasi-adiabatic approximation is excellent. That is to say, if
ω

(ε)
I , ω(κ)

I , and ωI represent the growth rates in the third through fifth
columns of Table 2, while ω

(0)
I is the growth rate obtained when all

of εT, ερ , κT, κρ are neglected (this is not shown in the table), then
we do find that ω

(ε)
I − ω(0) ≈ ωI − ω

(κ)
I for all of the models except

perhaps the first (10 M�), in which the ε-mechanism is very weak.
The sixth column in Table 2 differs from the fifth by including a

quasi-adiabatic work-integral estimate of convective viscous damp-
ing, following equations (11) and (12) of SQA. Since the quasi-
adiabatic method depends upon the adiabatic eigenfunction, and
since the adiabatic and non-adiabatic eigenfunctions differ strongly
in the shelf region, we truncate the work integrals at the local mini-
mum in the pressure scale height.

It can be seen that the two most massive models are stable with-
out the convective correction. This appears to be due to radiative
damping in the shelf. In Fig. 5, the first two nodes of the real part
of the displacement occur r ≈ 87 and 141 R�, where the imaginary
part is close to a local maximum and minimum, respectively. (Re-
call that the shelf begins at 46 R�.) Thus the phase increases with
radius, as for an outward-propagating acoustic wave. Evidently this
wave is damped almost completely, because if it were not, then
upon reflection from the photosphere a standing wave would result
with real and imaginary parts in phase. The escaping acoustic power
can be estimated as Ėac = 2πr2ρcs|δv|2, where δv = −iωδr is the
radial velocity perturbation and cs ≡ (�1P/ρ)1/2 is the adiabatic
sound speed. Evaluating this at the first node and dividing by twice
the total mode energy, 2Emode = 4π

∫
ρr2|δv|2dr , yields an esti-

mate for the damping rate of the mode amplitude: 11 Md−1. This
agrees well with the directly calculated growth rate shown for this
model in the fifth column of Table 2. Of course the calculations are
not independent because the estimate above uses the non-adiabatic
eigenfunction. But it does suggest that the non-adiabatic calcula-
tion is self-consistent, and also that acoustic radiation into the shelf
is the dominant loss mechanism at our highest masses. As further
evidence of this, the final column of Table 2 shows growth rates
calculated when the ‘photospheric’ boundary conditions (7) and
(10) are imposed at the local minimum of the pressure scale height
(which does not exist in the two least massive models), thus ef-
fectively discarding the shelf region from the linear analysis. This
results in a small positive growth rate.

4.3 Strange modes

In addition to the fundamental mode, there are in principle an infinite
number of other radial modes. Some, like the fundamental itself, are

Figure 6. Real (first panel) and imaginary (second panel) parts of the lowest
lying modes versus stellar mass. (Positive imaginary parts indicate instabil-
ity.) Solid circles mark the fundamental. Other modes are marked by the
number of nodes of δr/r in the core. M/M� ∈ {10, 13, 16, 21.5, 33, 46.4,
53, 60, 70, 80, 90, 100, 120, 150, 183, 200, 215, 250, 300, 400, 465, 500,
700, 983}.

slight modifications of adiabatic counterparts and are concentrated
in the core (the region below the local minimum of the pressure
scale height). The real parts of the frequencies of these increase
with the number of nodes in the displacement eigenfunction (δr/r),
while the imaginary parts tend to become more negative (i.e. more
damped) but are generally small because of the long thermal time
in the core.

Besides these, there are modes that have no obvious adiabatic
counterpart, and which are probably the strange modes discussed
by GK93 and Papaloizou et al. (1997). Though some of these are
damped, others have positive growth rates [Im(ω) > 0] whose re-
ciprocals approach the dynamical time. Their energies are strongly
concentrated in the tenuous shelf region and thus are not likely to
affect directly the bulk of the star. This is discussed more quantita-
tively below (Section 5.2).

Fig. 6 shows the complex eigenfrequencies versus mass for the
models in Table 1 and Fig. 6. For each mass, we show the four
or five modes with smallest real part – at least among those we
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Figure 7. Three strange modes of the 938 M� model, with frequencies
as shown. Solid and dashed curves show real and imaginary parts of the
eigenfunctions, respectively. Thin vertical dashed line divides the core from
the shelf (see Fig. 2). Note eigenfunctions are not weighted by r2ρ1/2.

have found.1 Below approximately 50 M�, these are of the nearly
adiabatic variety. At about 53 M�, however, the fourth and fifth
harmonics cross: the real parts of their frequencies become nearly
equal, and their eigenfunctions differ mainly in the nascent shelf
region. By 60 M�, one of the pair – the one with smaller real part –
has its energy almost wholly concentrated in the shelf. By 70 M�,
the successor to this mode crosses the second harmonic; by 94 M�
it has crossed the first harmonic; and it crosses the fundamental at
183 M�. Up to about 70 M�, the strange modes are damped, but
at M ≥ 80 M� they grow vigorously (Fig. 6). Our most massive
model has at least three strange modes with real parts of their
eigenfrequencies below that of the fundamental, and growth times
on the order of 10 d (Fig. 7). All but ∼10−8 of the energies of these
three modes lie in the shelf.

Our identification of the rapidly growing shelf modes with the
strange modes is based largely on the variation of their eigenfre-
quencies with mass and the concentration of their eigenfunctions in
the shelf. Papaloizou et al. (1997) propose as the definitive test of
‘strangeness’ that the modes should persist in the limit that ωtthermal

→ 0. We have not made this test but note that the shelf regions
of our most massive models are even more extreme than those of
GK93 with respect to radiation-pressure dominance and short ther-
mal times. We refer the reader to Papaloizou et al. (1997) and GK93
for further discussion of the linear physics of strange modes.

5 N O N - L I N E A R SATU R AT I O N

Appenzeller (1970) proposed that radial pulsations of very mas-
sive stars saturate in shocks that eject mass. His criterion for the
onset of shocks was that the radial velocity at the photosphere be-
comes larger than the local sound speed. Papaloizou (1973a) found

1 It is possible that some low-lying modes have been missed. At the higher
masses, the search for modes becomes tedious, especially for the strongly
non-adiabatic modes. There are several causes, but the most pernicious is
that each complex zero of the objective function described in Appendix A
is paired with a pole, and the separation between poles and zeros decreases
with increasing mass. This makes it difficult for zero-finders to ‘smell’ their
quarry from a distance in the complex plane.

in his own numerical calculations that shocks were not so easily
formed, and saturation occurred without mass loss. Our view is
closer to Papaloizou’s, but we emphasize coupling to non-radial
modes rather than radial overtones, at least for the fundamental
and other near-adiabatic modes. Saturation of strange modes is
more likely to yield shocks and is discussed briefly in Section 5.2
below.

The largest growth rates we find are �10t−1
KH. Here tKH is the

Kelvin–Helmholtz time defined as by Goodman & Tan (2004),
which asymptotes to tKH ≈ 3000 yr in the limit of very large masses.2

On the other hand, the pulsation periods recorded in Table 2 are
�1 d, and we expect this to scale ∝ M−1/2 at higher masses. Thus
the growth times are on the order of 105 pulsation periods. In this
sense, the instabilities are extremely weak, even if the possibly
stabilizing influence of convection is ignored.

At one level, this is not a surprise. Whether caused by the ε-
or κ-mechanism, pulsational instability operates by modulating the
heat content of the star on the pulsation period. Thus, the smallness
of the ratio |ωi/ωr| reflects the disparity between the characteristic
thermal and dynamical times of the star. We shall shortly argue that
the smallness of the linear growth rate implies a small amplitude at
non-linear saturation.

This is not inconsistent with the relatively large amplitudes of
oscillation of classical Cepheids (δR/R ∼ 0.1) because the lin-
ear growth times are only ∼100 pulsation periods in those stars
(e.g. Castor 1971; Bono, Marconi & Stellingwerf 1999), and it is
worth recalling why (e.g. Cox & Giuli 1968). Classical Cepheids
are evolved stars with degenerate cores and a very large ratio of
central to mean density. Consequently, the eigenfunction ζ (r) ≡
δr/r of the fundamental radial mode is very far from homologous,
ζ (0)/ζ (R) ∼ ρ̄/ρ(0) � 1. The mode mass – the factor by which
one multiplies the mean-square radial velocity at the surface to
get the total energy in the mode – is many orders of magnitude
smaller than the total mass of the star. In other words, for a given
surface amplitude δR/R, the stored energy in the mode is much
less than it would be if the pulsations were homologous, by a fac-
tor ∝Mmode/M∗. Since the driving regions for the κ-mechanism
lie near the surface, the work integral is insensitive to the mode
mass: it is of order �0 δL δR/R, where δL/L ∼ δR/R ∼ −δT/T is
the modulation of the surface luminosity and �0 ≡ 2πω−1

r is the
pulsation period. Therefore the growth rate, which scales with the
ratio of the work done per cycle to the stored energy in the mode, is
∼(M∗/Mmode)t−1

KH. The ε-mechanism is negligible in Cepheids be-
cause the nuclear-burning regions are in shell sources near the cen-
tre, where δ log T and δr/r are much smaller than in the ionization
zones.

As a quantitative example, we have used MESA to cre-
ate a ‘Cepheid’ with the following parameters: M∗ = 5.7 M�,
R∗ = 28.85 R�, Teff = 5900 K, and L = 906 L�. For this
model, ρ̄/ρ(0) = 6.2 × 10−8, while ζ (0)/ζ (R∗) = 3.3 × 10−6 and
Mmode/M∗ = 8.4 × 10−5 for the fundamental radial mode com-
puted with ADIPLS. By contrast, for the 938 M� main-sequence
model we find ζ (0)/ζ (R) = 0.66 and Mmode/M∗ = 0.061.3

2 In order that the estimate of tKH not be biased by the extended but almost
massless shelf, we use for R the radius of the base of the shelf as defined in
Section 3.
3 This depends upon what one considers to be the stellar ‘surface.’ For the
purpose of calculating Mmode, we use Rshelf (Section 3) when this is distinctly
less than the photospheric radius.
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Thus the fundamental mode is approximately homologous and in-
volves a significant fraction of the star’s mass. We expect Mmode/M∗
to be nearly constant and comparable to this for larger masses be-
cause of the similarity of these models to isentropic n = 3, �1 =
4/3 polytropes. Thus we also expect the growth rates of the funda-
mental radial mode to remain �10t−1

KH, due to the relatively homo-
geneous structure and homologous pulsation of these very massive
main-sequence models, regardless of the details of the excitation
mechanisms and of the shelf or wind.

5.1 Saturation of the fundamental via three-mode coupling

As a general rule, instabilities with smaller linear growth rates satu-
rate at lower amplitudes. A simple model equation for the amplitude
envelope A > 0 might be

dA

dt
= ωiA − νAn+1, (12)

in which ωi is the linear growth rate, while ν and n describe the non-
linearities. If ωi, ν, and n are all positive, then equilibrium is reached
at Asat = (ωi/ν)1/n. As noted above, pulsations in classical Cepheids
grow relatively rapidly. Saturation in these stars and in RR Lyraes
occurs via shocks and non-linear modification of the conditions
in the driving (ionization) zones (Christy 1966). Because of their
much smaller dimensionless growth rates (ωi/ωr ∼ 10−6 instead
of ∼10−3), the massive main-sequence stars considered here may
saturate at lower amplitudes, where more delicate non-linearities
may be effective.

Dziembowski (1982) suggested that three-mode coupling is re-
sponsible for saturation in dwarf Cepheids, and that this explains
why they oscillate at lower amplitudes than do classical Cepheids.
He worked directly from non-linear equations of motion. But if dis-
sipation is weak, an action principle, which is necessarily adiabatic,
can be efficient in describing mode couplings. The Lagrangian den-
sityL(ξ, ξ̇) is expanded in powers of the displacement ξ and its time
derivative ξ̇. The quadratic terms (L2) yield the linearized equations
of motion, while cubic and higher terms (L3 + L4 + · · ·) describe
non-linear couplings. When the amplitude of the primary/‘parent’
mode grows slowly from small amplitudes, the cubic non-linearities
are the first to come into play. The most important couplings are
those that are resonant, meaning that the linear eigenfrequencies
of the parent and daughter modes satisfy ωp ≈ ωd1 + ωd2, so that
secular transfers of energy can occur.4 However, the correspond-
ing Hamiltonian density H2 + H3 cannot be positive definite since
the components of ξ can have either sign, so that the higher order
non-linearities must dominate if the amplitudes pass some thresh-
old, perhaps leading to shocks and a breakdown of the Lagrangian
description. Actually, even when the amplitudes remain small, dis-
sipative terms must be added to the equations of motion to describe
the linear damping of the daughter modes. In application to pul-
sating stars, the growth rate of the parent is also represented by
a non-adiabatic term. The daughter modes are usually smaller in
wavelength than the parent and therefore more easily damped by
radiative diffusion or (perhaps) eddy viscosity.

Landmark applications of three-mode coupling to the saturation
of stellar instabilities include those by Wu & Goldreich (2001) (to
white dwarf/ZZ Ceti stars), as well as Schenk et al. (2002) and
Arras et al. (2003) (to rapidly rotating neutron stars). Papaloizou

4 In resonance conditions such as this, all frequencies are understood to be
real and non-negative.

(1973a) argued that pulsations of very massive stars driven by the
ε-mechanism can saturate via direct resonant couplings: that is, the
coupling of a quadratic or higher power of the fundamental mode
to a higher frequency radial p mode (overtone), so that nωf ≈ ωd

for some integer n > 1. Non-radial daughter modes offer many
more possibilities for resonance, however, g-modes are necessar-
ily non-radial and have low frequencies, which is important for
resonances of the type ωp ≈ ωd1 + ωd2 because the frequency of
the fundamental, ωf, is somewhat lower relative to the character-
istic dynamical frequency ω∗ ≡ (GM∗/R3

∗)1/2 than in less massive
stars, the ratio ωf/ω∗ scaling as M−1/2 (Goodman & Tan 2004).
Therefore we focus on couplings of this type. When the parent is
the radial fundamental mode, the strongest three-mode couplings
are usually parametric subharmonic, meaning that the two daughter
modes are two copies of the same mode, with frequency ωd ≈ ωf/2.
The eigenfunction of a typical daughter mode is high order, with
many nodes in radius and angle, but its square is non-negative and
hence may have a significant three-mode coupling with the node-
less radial fundamental. Parametric subharmonic destabilization of
g-modes and internal waves has been studied experimentally as
well as theoretically (Benielli & Sommeria 1998, and references
therein).

We use our most massive (938 M�) model as an example. Most
of the star convects, but there is a radiative zone at 29 � r/R� ≤
41 containing 0.026M. (There is also a second radiative zone at r ≥
44 R�, and still others in the shelf, but these contain much less mass,
so we neglect them here.) The peak of the Brunt–Väisälä frequency
is Nmax = 2.94ω∗, whereas the frequency of the fundamental radial
mode is ωf = 1.1446ω∗ ≈ 7.116 × 10−5 rad s−1 according to ADIPLS

(which computes only the real part), in good agreement with our
non-adiabatic code. Thus there are many g-modes with frequencies
∼ωf/2. Using the approximate Wentzel–Kramers–Brillouin (WKB)
dispersion for high-order g-modes,
√

l(l + 1)

ωln

∫
N (r)

dr

r
≈ π

(
n − 1

2

)
(13)

(where n ≥ 1 counts radial nodes) and the profile of the Brunt–
Väisälä frequency in the radiative zone, N(r), we estimate that n/l ≈
0.34 for ωln ≈ ωf/2 and l, n 
 1. For a non-rotating spherical star, so
that the eigenfrequency is independent of spherical-harmonic order
m, the number of mode frequencies in a given interval 
ω near ωf/2
that correspond to g-modes of degree l′ ≤ l scales as 0.17 l2
log ω

when l 
 1. Inverting this, the minimum l at which one expects to
find modes in the interval 
ω is

lmin(
ω) ≈ 2.4

(

ω

ω

)−1/2

. (14)

The distance 
ω from exact subharmonic resonance at which
daughter modes can grow depends upon the linear damping rate
of these modes, the amplitude of the parent, and the three-mode
coupling coefficient. For the damping time of high-order g-modes
by radiative diffusion, we apply equation (4.8) of Dziembowski
(1982) to our 938 M� model:

tdamp = γ −1
d ≈ 1.0

(
30

l

ωf

2ω

)2

yr. (15)

We evaluate the three-mode coupling coefficient from equation
(A8) of Kumar & Goldreich (1989). Their formula assumes that
the adiabatic exponent �1 is constant and neglects the Eulerian per-
turbation to the gravitational potential, which, although essential
for the eigenfrequency of the fundamental mode, is unimportant
for the coupling since most of the stellar mass lies interior to the

MNRAS 456, 525–537 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/456/1/525/1070899 by Princeton U
niversity user on 31 M

ay 2019
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propagation region of the g-modes in our case. We make the
further approximation that the fundamental mode is exactly ho-
mologous, meaning that its radial displacement is given by δr(r,
t) = ζ r cos (ωft), with ζ spatially constant but growing slowly
as exp (ωit). We approximate the daughter mode eigenfunctions
using WKB, neglecting terms of relative order (krHP)−1, where
kr ≈ √

l(l + 1)N/ωr is the radial wavenumber and HP the pressure
scale height, and find that∫

H3d3x = · · · +
(

3�1 − 1

2

)
ζ cos ωf t

∫
N2δr2

d dM . (16)

Here ‘···’ represents all three-mode coupling other than the one of
interest, while δrd = qd(t)ξ r,d(r)Ylm(θ , φ) is the radial displacement
of the daughter mode, with time-dependent amplitude qd(t). For
simplicity, we set �1 = 4/3, though the mass-averaged value of �1

in the 938 M� model is ≈1.37.
The integrand of equation (16) is twice the potential energy per

unit mass of the g-mode. The coupling term can therefore be treated
as though it were a time-dependent correction to the linear dynamics
of the daughter mode, whose amplitude evolves according to

q̈d + 2γdq̇d + ω2
d [1 + 3ζ cos(ωf t)] qd = 0. (17)

As usual with such Mathieu equations, if ζ and γ d/ωd are both
small, then the solutions for qd(t) are approximately sinusoidal but
with envelopes varying as exp (st):

s = −γd ± 3ζωd

4

√
1 −

(
4
ωd

3ζωd

)2

, 
ωd ≡ ωd − 1

2
ωf . (18)

Thus in order that the daughter mode should grow even at exact
resonance (
ωd = 0), we must have ζ > 4γ d/3ωd. Since γ d ∝ l2

(equation 15), this sets an upper bound to the degrees of daughter
modes that can be destabilized when the amplitude of the fun-
damental is δR/R = ζ � 1. Yet l must be large enough so that
it is probable to find eigenfrequencies within the range |
ωd| ≤
3ζωd/4 for which the square root in equation (17) is real. Thus in
effect we must evaluate γ d at the degree lmin that is found by setting

log ω ≈ ζ in equation (14). Then γd ∝ l2

min ∝ ζ−1, so that the
requirement 3

4 ζωd > γd for growth leads to an inequality of the
form ζ > Cζ−1. Evaluating the numerical factor C, we find that
the threshold for exciting daughter modes is approximately(

δR

R

)
min

≈ 3 × 10−3, ld ≈ 45. (19)

Since the mode frequencies are sensitive to details of the stellar
model, the occurrence of resonance is effectively probabilistic, and
therefore the threshold for subharmonic instability will vary some-
what. In fact, for the particular model considered here, ADIPLS finds

ωd/ωd ≈ 4 × 10−4 at ld = 26, which is some 20 times closer to
resonance than would be expected from the statistical estimate (14).

The threshold (19) of subharmonic instability involves only the
current amplitude of the fundamental mode, not its rate of growth,
ωi. The latter is important for deciding whether the daughter modes
can actually accept and dissipate energy from the parent faster than
the non-adiabatic work integral increases that energy. Arras et al.
(2003) state as a rule of thumb that the condition for this is simply
γ d >ωi, a regime they call ‘weak driving’. Clearly this would suffice
for non-linear saturation of the unstable parent mode if a daughter
mode could reach energy equipartition with the parent, but that is
unlikely in our case. The wavelength of the first daughters to go
unstable is much smaller than the radius of the star, roughly by a
factor 2/l when one accounts for both the radial and angular compo-
nents of the wavenumber. Also the mass of the g-mode propagation

zone is only 0.026M, whereas the effective mass of the fundamental
mode is 0.061M, as previously discussed. Therefore if a daughter
mode at, say, ld = 45 were to have the same energy as the funda-
mental, it would have a strain rate (spatial derivative of velocity)
roughly 2π(l/2)

√
0.061/0.026 ≈ 5. l times larger than the parent.

At such a strain rate, the daughter mode would destabilize still other
modes (granddaughters) and probably transfer energy to them more
quickly than it could receive energy from the parent. Therefore
equipartition is unlikely.

On the other hand, γ d 
 ωi in the present case, so that the rate of
linear dissipation by daughter modes could balance the growth of the
parent even if the daughters’ energies were well below equipartition
with the parent. Because of the degeneracy of the eigenfrequencies
in a non-rotating star, 2ld + 1 daughter modes grow at the same rate.
When the average energy per mode reaches a value Ēd, the total
linear dissipation rate becomes 2(2ld + 1)γdĒd. Setting this equal
to the rate at which the fundamental mode gains energy from its
own linear instability, 2ωiEf, shows that saturation is possible when
Ēd/Ef ≈ (2ld + 1)−1(ωi/γd). Evaluating this for ld = 45, γ −1

d ≈
0.46 yr (cf. equation 15), and ωi = (500 yr)−1 leads to Ēd/Ef ≈
10−5. The ratio of strain rates is then

1

2

√
Ēd

Ef
4.6ld ≈ 0.3 (ld ≈ 45) (20)

(a factor of 1/2 reflects the lower frequency of the daughters). Since
this is less than unity, saturation of the parent/fundamental mode is
likely at daughter amplitudes too small to excite granddaughters.

We conclude that it is indeed likely that three-mode coupling
will saturate the growth of the fundamental radial mode. However,
some caveats are in order regarding rotation, which we have so far
neglected.

There are at least two rotational regimes to consider: slow and
fast. Slow rotation at an angular velocity � � l−1

d ω∗ but �Nmax

will lift the degeneracy with respect to spherical-harmonic order
m, while preserving the degree l as a useful approximate quantum
number. Since there are more distinct eigenfrequencies, subhar-
monic resonance becomes possible at smaller l: equation (14) is
replaced by lmin ≈ 1.6(
ω/ω)−1/3 → 0.6ζ−1/3. Otherwise follow-
ing the same steps as before, the threshold of instability occurs
at ζ ≈ 5.4 × 10−4 and ld ≈ 20 (both lower than before). Now a
single, non-degenerate daughter mode first goes unstable, so the re-
quired balance at saturation if this daughter only is active becomes
2γdĒd = 2ωiEf , and the ratio of strain rates (daughter:parent) works
out to ≈3 instead of 0.3. Hence non-linear coupling of the daughter
to granddaughters may occur, limiting the energy of the former and
complicating the analysis. On the other hand, the number of unsta-
ble daughters will increase rapidly (∝ ζ 5/2) as the amplitude of the
parent increases above the first subharmonic threshold, so without
having analysed the situation carefully, we still expect saturation to
occur.

By fast rotation, we mean fast enough so that inertial oscilla-
tions – approximately incompressible motions restored by Coriolis
rather than buoyancy forces – can have resonant three-mode cou-
plings with the parent, as considered by Schenk et al. (2002) and
Arras et al. (2003) for neutron stars. Since the maximum frequency
of inertial oscillations is 2�, a necessary condition for subharmonic
instability of the fundamental mode is � > ωf/4. In the 938 M�
model, this translates to � > 0.286ω∗, which is half or less of
the mass-shedding limit for an n = 3 polytrope, depending how
one defines ω∗ for a non-spherical body (Hurley & Roberts 1964).
Rapid rotation is not unreasonable for a body recently formed by
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534 J. Goodman and C. J. White

fragmentation of an active galactic nucleus (AGN) accretion disc.
Furthermore, ωf/ω∗ scales as M−1/2 with increasing stellar mass.5

Unlike g-modes, inertial oscillations propagate in convection zones,
so that they may be destabilized throughout these (largely convec-
tive) massive stars. This is salient because we are not sure how the
mass fraction of the radiative zones should scale at masses above
103 M� and supersolar metallicities. Even when the condition � >

ωf/4 is not satisfied, the imposition of rotation on vigorous convec-
tion will surely lead to magnetic fields, perhaps in rough equipar-
tition with the convection, so that radial pulsations may couple
non-linearly to small-scale Alfvénic modes.

5.2 Saturation of strange modes

Because of their large growth rates, strange modes are unlikely to
saturate via three-mode couplings of the sort discussed above. They
will grow to large amplitudes and probably saturate via shocks.

As a conservative criterion for the amplitude at which a shock
appears, we take |∂δr/∂r|max ≥ 1, since this would predict shell
crossing in the absence of shocks. For the fastest growing strange
mode of the 938 M� model, |∂δr/∂r|max = 25.9δR/R. The max-
imum is achieved at r = 0.984R. Shocks may then appear
when the surface amplitude δR/R = (25.9)−1 ≈ 4 per cent. At this
point, the amplitude of the displacement eigenfunction at the surface
of the core (r ≈ 0.169R) will be only 1.4 × 10−6. The correspond-
ing numbers for the other two strange modes of this model are 2 ×
10−6 and 7 × 10−6. Given the smallness of these numbers, it seems
inconceivable that strange modes could threaten the survival of the
star on dynamical time-scales.

Whether finite-amplitude strange modes drive mass loss from
the shelf is a different and difficult question. On the one hand, the
maximum radial velocity at shock onset is rather small (�5 per cent)
compared to the escape velocity vesc = (2GM/R)1/2. On the other
hand, the residual between gravitational and radiative accelerations
is relatively small, so that escape may be possible at v � vesc.
Furthermore, line-driven steady winds are likely even without the
assistance of shocks. If the mass-loss rate of such a wind is high
enough, it may tend to suppress the linear instability of the strange
modes. All of this we leave for later investigation.

6 SU M M A RY A N D D I S C U S S I O N

We have re-examined the stability of the fundamental radial mode of
very massive main-sequence stars. Although non-radial and higher
order radial modes may also be unstable, we focus on the radial fun-
damental because collapse or explosion of these radiation-pressure-
dominated objects would begin with this mode at linear order. In
agreement with SQA, we find that the linear growth rate is sensitive
to turbulent convective damping. We have extended their results to
higher masses at solar metallicity, and we have used a fully non-
adiabatic rather than quasi-adiabatic method, which allows us to
treat the κ-mechanism more reliably. The ε-mechanism is more
important for our most massive models we consider, however.

5 Uniform rotation at the mass-shedding limit may set a lower limit to
ωf/ω∗ because rotational energy behaves somewhat like gas pressure in
the time-dependent virial theorem. Because of the central concentration of
n = 3 polytropes, however, we estimate that this limit comes into effect only
for M � 105 M�, where relativistic corrections must also be considered
(Baumgarte & Shapiro 1999).

The linear growth rates remain uncertain not only because of the
turbulent bulk viscosity, but also because of the tenuous (and pos-
sibly unphysical) envelopes possessed by all of our models above
100 M�. In fact we find negative growth rates even without con-
vection, apparently due to radiative damping in the shelf. Neverthe-
less, the growth rate should in any case be extremely small even if
positive, ωi/ωr ∼ �0/tKH, due to the relatively low central concen-
trations of these stars and correspondingly large mode masses.

We have then argued from the smallness of the linear growth rate
(in case this is positive) that the radial fundamental should saturate
at a small amplitude due to any one of a number of weak non-
linearities. To support this claim, we have estimated the saturation
amplitude that would result if parametric coupling to high-order g-
modes were the most important non-linearity. For our most massive
model, the estimate is δR/R ≈ 3 × 10−3. Other non-linear cou-
plings may stop the growth at even smaller amplitudes, but those
we identify would depend on uncertain parameters such as the star’s
rotation rate or magnetic field.

We have also shown that our models, like those of GK93, are
subject to a class of intrinsically non-adiabatic modes having much
larger growth rates but confined to the shelf: strange modes. These
we estimate to saturate at fractional surface displacements of a few
per cent via shocks. Their contribution to mass loss, if any, can
be reliably estimated only in the context of a time-dependent wind
model that includes a number of other non-linear effects, such as
line driving. However, even at saturation, the energy of the strange
modes in the stellar core is negligible, and therefore they probably
affect the bulk of the star only secularly.

A number of physical simplifications and compromises have been
made: restriction to solar metallicity; neglect of rotation; and neglect
of perturbations to the convective flux. Increased metallicity might
produce even more extended ‘shelves’ in the equilibrium models,
and larger growth rates for the modes driven by the ε-mechanism.
However, presuming that the growth rates of the fundamental mode
varied roughly linearly with Z, they would remain very small com-
pared to the dynamical time even at metallicities 10 times solar,
such as may obtain in AGN discs (Dietrich et al. 2003; Nagao, Mar-
coni & Maiolino 2006). Rotation is expected to have a stabilizing
influence on the fundamental mode at very high masses because it
contributes to the perturbed energy under homologous changes in
radius somewhat like gas rather than radiation pressure (Baumgarte
& Shapiro 1999). This could be important for very massive stars
formed in an AGN disc, and perhaps continually accreting from that
disc, since such objects would probably rotate rapidly (Goodman &
Tan 2004; Jiang & Goodman 2011). Neglect of perturbations to the
convective flux has surely caused quantitative errors in the growth
rates. Guzik & Lovekin (2012), using a prescription for such per-
turbations that incorporates a time delay in the convective response,
find that super-Eddington luminosities can occur during part of the
pulsation cycle, perhaps leading to mass loss. However, their anal-
ysis is limited to the outer parts of the star. More importantly, their
prescription relies on mixing-length theory, which may not be re-
liable in the extremely radiation-pressure-dominated shelf regions
(Jiang et al. 2015).

Despite these simplifications and uncertainties, it seems likely
that the growth rate of the fundamental mode must be extremely
small compared to the reciprocal of the dynamical time, and there-
fore that pulsations in the fundamental will saturate non-linearly at
small amplitudes too small to disrupt or collapse the star – at least
on the main sequence. We conclude that thermally driven pulsations
of the radial fundamental mode do not limit the main-sequence life-
times of very massive stars. The tenuous outer envelopes of the more
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massive MESA models, however, which stem from an opacity bump
at ∼105 K, lead us to suspect that these stars would have powerful
winds if the hydrostatic constraint were lifted, and that the mass-loss
time-scale (M∗/Ṁ) may be much less than 1 Myr, though necessar-
ily longer than the Kelvin–Helmholtz time-scale (≈3000 yr). The
lower bound would be achieved only if all of the stellar luminosity
were converted to the mechanical energy of a wind with vanishing
asymptotic velocity at infinity. For a very massive star embedded in
a dense AGN disc, continued accretion from the disc might easily
exceed the wind losses, perhaps causing it to grow to such a mass
as to undergo relativistic instability.

These results suggest a few directions for future research. It
will be relatively straightforward to explore the effect of super-
solar metallicities on the linear growth rates. Changes in the growth
rates as the models evolve away from the ZAMS could also be
studied, although we have not yet succeeded in evolving our most
massive MESA models to the end of their main-sequence phases.
Probably more important, but also more challenging, will be to
determine the mass-loss time-scale. Several physical mechanisms
will have to be considered, including line-driven winds (Castor, Ab-
bott & Klein 1975); inhomogeneous optically thick winds (Owocki
2015); and perhaps winds driven by non-linear strange modes or
other radiation-driven instabilities. Still more mechanisms may op-
erate in late stages of stellar evolution, such as wave-driven winds
(Quataert et al. 2015). The range of possibilities is narrowed if
one focuses on mechanisms that operate early in the life of a star
and that are capable of removing much of its initial mass in much
less than the nominal main-sequence lifetime. Even so, multidi-
mensional calculations with frequency-dependent radiative transfer
may be required.
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A P P E N D I X A : M E T H O D F O R ST I F F L I N E A R
B O U N DA RY-VA L U E PRO B L E M S

The method described here is similar to that of Drury (1980) and
Davey (1983), but different in detail and slightly simpler, at least in
derivation. One wants to solve

d y
dx

= A y, (A1)

y being a column vector of length n representing the dependent
variables, and A an n × n matrix depending upon an eigenvalue
to be determined, and usually also on the independent variable, x.
In our case n = 4, and the eigenvalue is the complex frequency
of pulsation, ω. There are p homogeneous boundary conditions to
be satisfied at the left-hand boundary, x = xmin, and n − p at the
right-hand boundary, x = xmax. These are represented by p × n and
(n − p) × n matrices B(xmin) and C(xmax):

B(xmin) y(xmin) = 0, C(xmax) y(xmax) = 0. (A2)

One expects non-zero solutions for y(x) only for discrete values of
ω, which are to be determined.
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Figure A1. Real (solid) and imaginary (dashed) parts of the four eigenval-
ues of A in the 938 M� model. Vertical scale is linear within the interval

(−R−1� , R−1� ), and logarithmic outside it.

The difficulty in solving this boundary-value problem is that the n
complex eigenvalues of A(x, ω) may differ widely in size (Fig. A1).
In our problem, they vary over 4–6 orders of magnitude in the inner
parts of the star, due to the large ratio of thermal to dynamical time.6

Furthermore, since the eigenfunction corresponding to λ behaves
as ∼exp (

∫
xλdx), direct integration of equation (A1) can overflow

or underflow machine precision if the real part of λ is large. This
happens in our stellar problem, and both signs of Real(λ) occur
simultaneously. It therefore proves impractical to use a conventional
shooting method in which one iteratively makes guesses for the
unconstrained components of y at both boundaries (and for ω) and
integrates towards a fitting point. As described above, a relaxation
(Henyey-type) method also failed.

Instead, we propagate the boundary conditions themselves to
the fitting point. For a given choice of ω and for any x and x′

between the boundaries, equation (A1) has the formal solution
y(x) = P(x, x ′) y(x ′) if the ‘propagator’ P satisfies

∂P

∂x
(x, x ′) = A(x)P(x, x ′),

∂P

∂x ′ (x, x ′) = −P(x, x ′)A(x ′),

P(x, x ′) = P(x, x ′′)P(x ′′, x ′), P(x, x) = I,

(A3)

I being the n × n identity. The left-hand boundary condition (A2) can
then be restated as B(x̄) y(x̄) = 0 with B(x̄) ≡ B(xmin)P(xmin, x̄).
Similarly C(x̄) y(x̄) = 0 with C(x̄) ≡ C(xmax)P(xmax, x̄). In other
words, the solution y(x̄) at any intermediate x̄ between xmin and
xmax must belong to the subspace annihilated by B(x̄), and also to
the subspace annihilated by C(x̄). Since the dimensions of these
two subspaces add up to n, their intersection is only y = 0 unless ω

is a root of

det{B(x̄),C(x̄)} = 0, (A4)

{B,C} meaning the n × n matrix whose first p rows coincide with
those of B and whose last n − p rows those of C.

6 The eigenvalues {λ1, . . . , λn} of A at a particular x should not be confused
with the eigenvalue ω of the entire boundary-value problem. It might be
better to speak of wavenumbers kx ≡ −iλ. Since A depends upon ω as well
as x, the λs and kxs do as well.

This reformulation may appear pointless since it is no easier to
solve for P by direct integration of equation (A2) than to solve equa-
tion (A1) itself. The same difficulties with stiffness and overflow
occur. Furthermore, as the separation between x̄ and xmin increases,
the rows of B(x̄) are dominated by the fastest growing eigenvector
of A, so that they quickly become linearly dependent when esti-
mated in finite-precision arithmetic. A key observation, however,
is that the constraint B(x) y(x) = 0 is equivalent to LB(x) y(x) = 0
for any non-singular p × p matrix L. This can be exploited to keep
the rows of LB(x) linearly independent, in fact orthonormal.

In practice one integrates equation (A1) or equation (A2) on a
discrete grid xmin = x0 < x1 < x2··· < xN = xmax. Let xm be the fitting
point, 0 < m < N. The values of B(xk) could be defined iteratively
according to

B(xk+1) = B(xk)P(xk, xk+1), B(x0) = B(xmin).

Instead of this, however, we solve

B̂k+1 = Gk+1B̂kP̂k,k+1, B̂0 = B(xmin). (A5)

Here P̂k,k+1 is a discrete approximation to P(xk, xk+1) – a suitable
choice will be given presently – while Gk+1 is chosen at each step
to make the rows of B̂k+1 orthonormal. For example, if p = 2 and
the rows of B̂kP̂k,k+1 are a and b, then

Gk+1 =
(

1 0

0 γ

)(
1 0

−β 1

)(
α 0

0 1

)
, (A6)

with α ≡ |a|−1, β ≡ αba†, and γ = |b − αβa|−1. This represents
the Gram–Schmidt process, which can be extended to any num-
ber of rows. It is clear that if P̂k+1 = P(xk, xk+1), then B̂m =
G0G1 · · ·GmB(xm), so that det B(xm) = 0 if and only if det B̂m = 0.

We now discuss a suitable approximation for P(xk, xk+1). If A
were constant over the interval [xk, xk+1], then P̂k,k+1 = exp[(xk+1 −
xk)A] would be exact, and otherwise if A is evaluated at the midpoint
xk+1/2 ≡ (xk + xk+1)/2, then the exponential approximation formally
second order in 
xk ≡ xk+1 − xk. However, in our problem, the
largest eigenvalue of Ak+1/2 can be so large that on a reasonable
mesh (we typically interpolate the MESA model with splines at ∼103–
104 uniformly spaced radii), the matrix exponential can overflow,
or at least cause substantial loss of precision. We therefore adopt
the Crank–Nicholson approximation:

P̂k,k+1 =
(

I + 1

2

xkAk+1/2

) (
I − 1

2

xkAk+1/2

)−1

. (A7)

Eigenvalues of Ak+1/2 with positive (negative) real part, correspond-
ing to behaviours that grow (decay) with increasing x, are mapped
to eigenvalues of P̂k,k+1 inside (outside) the unit circle, presuming
xk < xk+1; very large eigenvalues of 
xkAk+1/2 are mapped to eigen-
values of P̂k,k+1 close to −1. It is still necessary to use a mesh fine
enough so that the behaviours that should decay with the iteration
(A5) do so quickly enough; the growing behaviours are controlled
by the orthonormalization. In practice this is determined by varying
the mesh resolution and monitoring the effect on the estimated root
of equation (A4) for ω.

Another constraint on the mesh is that the Crank–Nicholson ap-
proximation (A7) for P(xk, xk+1) encounters a pole if Ak+1/2 has
2/
xk+1/2 as an eigenvalue. In fact, the eigenvalue represented by
the blue lines in Fig. A1 is nearly real and diverges towards the
centre of the star. This corresponds approximately to the singular
solution of the adiabatic equation, ∝ r−3 as r → 0. To control
this, we start the integration at a non-zero but small radius rmin

with a mesh spacing 
r � rmin/3. This ensures that no poles are
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encountered as we integrate outward, since the other two large
eigenvalues, which represent strongly non-adiabatic heat diffusion,
have almost equal real and imaginary parts,7 so that they cannot
cause poles for real values of 
xk = 
r.

The right-hand boundary condition is translated to the matching
point by constructing the (n − p) × p matrix Ĉm in similar fashion.

A1 Analyticity

In many problems of physical interest, the components of the ma-
trix A depend analytically or even polynomially on the eigenvalue
ω. Such is the case in our stellar problem, since ω is a temporal
frequency and there are a finite number of time derivatives in the
linearized equations. The matrices P(x, x ′), B(x), C(x), and the
determinant (A4) can then be expected also to depend analytically
on ω, i.e. their derivatives with respect to ω satisfy the Cauchy–
Riemann equations. It is desirable to have a numerical scheme that
preserves this analyticity up to round-off error, notwithstanding
truncation error. For one thing, if F(ω) represents the determinant
(A4), then the roots of F(ω) = 0 can be sought by an efficient algo-
rithm that assumes analyticity. The simplest of these, and what we
use, is false position,

ω̂n+1 = ω̂n−1F̂ (ω̂n) − ω̂nF̂ (ω̂n−1)

F̂ (ω̂n) − F̂ (ω̂n−1)
. (A8)

This is only a minor convenience since the root could be sought by
treating the real and imaginary parts of ω̂ (and of F̂ ) as independent.
More importantly, the convergence of equation (A8) for complex ω̂

depends upon the extent to which

7 They satisfy −iωδT ≈ η∂2δT /∂r2, where η = 16σSBT 3/3κρ2cP is the
thermal diffusivity. Hence the eigenvalues ikr ≈ ±√−iω/η.

F̂ (ω + iε) − F̂ (ω)

iε
≈ F̂ (ω + ε) − F̂ (ω)

ε
, |ε| � |ω|, (A9)

and so can be used to monitor the effects of round-off error.
The numerical scheme described above is not analytic in ω, even

in exact arithmetic, because of the complex conjugations involved
in the orthonormalization matrices Gk and L. That is to say, if F̂ (ω)
were defined as the determinant that results from replacing B(x̄)
and C(x̄) with B̂m and Ĉm in equation (A4), then it would not be
analytic in ω. However, analyticity can be rescued by the following
simple trick. The condition B̂m ym = 0 constitutes p constraints on
the n components of ym. Therefore, it can be rewritten as

v = B̃u, (A10)

where u is a column vector containing the first n − p components
of ym, v contains the remaining p components, and B̃ is p × (n −
p). Now it is easy to see that B̃ is independent of the non-analytic
orthonormalizing factors G0 · · ·GN ≡ L defined via equations (A5)
and (A6), at least in principle, since B̂m ym = 0 is equivalent to
L−1B̂m ym = 0, and the latter is analytic. Similarly, we can rewrite
the translated right-hand boundary condition Ĉm ym = 0 as u = C̃v.
Eliminating u between this and equation (A10) leads to

F̂ (ω) ≡ det(B̃C̃ − I) = 0. (A11)

This is analytic, apart from roundoff error, as we have confirmed nu-
merically via equation (A9) and by the convergence of the iteration
(A8) to the level |
ω/ω| � 10−9.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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