Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions
Author(s): Chen, Hsieh; Cox, Jason R; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1sz23
Abstract: | Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl 2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl 2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca 2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions. |
Publication Date: | Sep-2016 |
Electronic Publication Date: | 23-Jun-2016 |
Citation: | Chen, Hsieh, Cox, Jason R, Ow, Hooisweng, Shi, Rena, Panagiotopoulos, Athanassios Z. (2016). Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions. Scientific Reports, 6 (1), 10.1038/srep28553 |
DOI: | doi:10.1038/srep28553 |
EISSN: | 2045-2322 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Scientific Reports |
Version: | Final published version. This is an open access article. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.