# A RELATIVE OF HADWIGER’S CONJECTURE

## Author(s): Edwards, Katherine; Kang, Dong Yeap; Kim, Jaehoon; Oum, Sang-Il; Seymour, Paul D

To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1r20rw52
DC FieldValueLanguage
dc.contributor.authorEdwards, Katherine-
dc.contributor.authorKang, Dong Yeap-
dc.contributor.authorKim, Jaehoon-
dc.contributor.authorOum, Sang-Il-
dc.contributor.authorSeymour, Paul D-
dc.date.accessioned2023-12-11T16:34:47Z-
dc.date.available2023-12-11T16:34:47Z-
dc.date.issued2015en_US
dc.identifier.citationEdwards, Katherine, Kang, Dong Yeap, Kim, Jaehoon, Oum, Sang-Il, Seymour, Paul. (2015). A RELATIVE OF HADWIGER’S CONJECTURE. SIAM JOURNAL ON DISCRETE MATHEMATICS, 29 (2385 - 2388. doi:10.1137/141002177en_US
dc.identifier.issn0895-4801-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1r20rw52-
dc.description.abstractHadwiger’s conjecture asserts that if a simple graph G has no Kt+1 minor, then its vertex set V(G) can be partitioned into t stable sets. This is still open, but we prove under the same hypothesis that V(G) can be partitioned into t sets X-1, ..., X-t, such that for 1 <= i <= t, the subgraph induced on X-i has maximum degree at most a function of t. This is sharp, in that the conclusion becomes false if we ask for a partition into t - 1 sets with the same property.en_US
dc.format.extent2385 - 2388en_US
dc.language.isoen_USen_US
dc.relation.ispartofSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleA RELATIVE OF HADWIGER’S CONJECTUREen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1137/141002177-
dc.date.eissued2015-12-10en_US
dc.identifier.eissn1095-7146-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat