A RELATIVE OF HADWIGER’S CONJECTURE
Author(s): Edwards, Katherine; Kang, Dong Yeap; Kim, Jaehoon; Oum, Sang-Il; Seymour, Paul D
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1r20rw52
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Edwards, Katherine | - |
dc.contributor.author | Kang, Dong Yeap | - |
dc.contributor.author | Kim, Jaehoon | - |
dc.contributor.author | Oum, Sang-Il | - |
dc.contributor.author | Seymour, Paul D | - |
dc.date.accessioned | 2023-12-11T16:34:47Z | - |
dc.date.available | 2023-12-11T16:34:47Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.citation | Edwards, Katherine, Kang, Dong Yeap, Kim, Jaehoon, Oum, Sang-Il, Seymour, Paul. (2015). A RELATIVE OF HADWIGER’S CONJECTURE. SIAM JOURNAL ON DISCRETE MATHEMATICS, 29 (2385 - 2388. doi:10.1137/141002177 | en_US |
dc.identifier.issn | 0895-4801 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1r20rw52 | - |
dc.description.abstract | Hadwiger’s conjecture asserts that if a simple graph G has no Kt+1 minor, then its vertex set V(G) can be partitioned into t stable sets. This is still open, but we prove under the same hypothesis that V(G) can be partitioned into t sets X-1, ..., X-t, such that for 1 <= i <= t, the subgraph induced on X-i has maximum degree at most a function of t. This is sharp, in that the conclusion becomes false if we ask for a partition into t - 1 sets with the same property. | en_US |
dc.format.extent | 2385 - 2388 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | SIAM JOURNAL ON DISCRETE MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | A RELATIVE OF HADWIGER’S CONJECTURE | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1137/141002177 | - |
dc.date.eissued | 2015-12-10 | en_US |
dc.identifier.eissn | 1095-7146 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1407.5236.pdf | 86.12 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.