Skip to main content

Seismic Probes of Solar Interior Magnetic Structure

Author(s): Hanasoge, Shravan; Birch, Aaron; Gizon, Laurent; Tromp, Jeroen

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1qv3c39q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHanasoge, Shravan-
dc.contributor.authorBirch, Aaron-
dc.contributor.authorGizon, Laurent-
dc.contributor.authorTromp, Jeroen-
dc.date.accessioned2023-12-14T17:46:28Z-
dc.date.available2023-12-14T17:46:28Z-
dc.date.issued2012-09-06en_US
dc.identifier.citationHanasoge, Shravan, Aaron Birch, Laurent Gizon, and Jeroen Tromp. "Seismic probes of solar interior magnetic structure." Physical review letters 109, no. 10 (2012). doi:10.1103/physrevlett.109.101101.en_US
dc.identifier.issn0031-9007-
dc.identifier.urihttps://link.aps.org/accepted/10.1103/PhysRevLett.109.101101-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1qv3c39q-
dc.description.abstractSun spots are prominent manifestations of solar magnetoconvection, and imaging their subsurface structure is an outstanding problem of wide physical importance. Travel times of seismic waves that propagate through these structures are typically used as inputs to inversions. Despite the presence of strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms of changes to isotropic wave speeds and flow-advection-related Doppler shifts. Here, we employ partial-differential-equation-constrained optimization to determine the appropriate parametrization of the structural properties of the magnetic interior. Seven different wave speeds fully characterize helioseismic wave propagation: the isotropic sound speed, a Doppler-shifting flow-advection velocity, and an anisotropic magnetic velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and Alfvén waves, each of which propagates at a different wave speed. We show that even in the case of weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for in inversions. Translation invariance is demonstrably lost. These developments render plausible the accurate seismic imaging of magnetoconvection in the Sun.en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rightsAuthor's manuscripten_US
dc.titleSeismic Probes of Solar Interior Magnetic Structureen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/physrevlett.109.101101-
dc.identifier.eissn1079-7114-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Seismic_probes_solar_interior_magnetic_structure.pdf386.1 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.