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Sunspots are prominent manifestations of solar magnetoconvection and imaging their subsurface
structure is an outstanding problem of wide physical importance. Travel times of seismic waves that
propagate through these structures are typically used as inputs to inversions. Despite the presence of
strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms
of changes to isotropic wavespeeds and flow-advection related Doppler shifts. Here, we employ PDE-
constrained optimization to determine the appropriate parameterization of the structural properties
of the magnetic interior. Seven different wavespeeds fully characterize helioseismic wave propagation:
the isotropic sound speed, a Doppler-shifting flow-advection velocity and an anisotropic magnetic
velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and
Alfvén waves, each of which propagates at a different wavespeed. We show that even in the case of
weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for
in inversions. Translation invariance is demonstrably lost. These developments render plausible the
accurate seismic imaging of magnetoconvection in the Sun.

Sunspots are substantial deviations from the quiet
Sun, with umbral temperatures dropping by as much
as 20% from ambient conditions. Numerous questions
swirl around sunspot physics, such as understanding their
long-time stability (compared to convective turnover
timescales) and appreciating their creation, emergence
and eventual death. The use of helioseismic waves to
probe the structure of sunspots has a long and contro-
versial history (for a review, see, e.g., [1]). Inversions
for sunspot sub-surface structure and dynamics (e.g., [2])
attempt to explain away the observed effects on seis-
mic waves by an entirely isotropic wavespeed, an ap-
proximation that has faced subsequent marginalization
(e.g., [3]) owing to the widespread recognition of strong
anisotropies prevalent in sunspots. Forward modeling of
wave propagation in sunspots has generated a deeper ap-
preciation for measurements and fully realistic non-linear
sunspot evolution calculations ([4]) have proven success-
ful. However, posing an inverse problem that accounts
for these anisotropies remains an outstanding problem of
great relevance, towards whose eventual resolution this
article takes a significant step.

Waves are excited stochastically in the Sun due to the
action of vigorous near-surface convection. The cross
correlation of wavefield velocities measured at the photo-
sphere of the Sun (by measuring Doppler shifts of absorp-
tion lines formed at the photosphere; e.g., the Helioseis-
mic and Magnetic Imager onboard the Solar Dynamics
Observatory [5]) is empirically known to be an ergodic
random process (e.g., [6]). The associated travel time of
a wave between two points on the solar photosphere is
estimated by fitting the cross correlation of the plasma
velocities measured at those points. We introduce a mis-
fit functional, defined as the L2 norm of the difference
between observed (τoi ) and predicted (τpi ) travel times

along a collection of paths i:
∑

i(τ
o
i − τpi )

2. We then
pose the following PDE-constrained optimization prob-
lem

χ =
∑

i

(τoi − τpi )
2 −

∫

⊙

dx

∫

dωλ · (Lξ − S), (1)

where χ is the cost function, S the wave source, ω tem-
poral frequency, x the spatial coordinate and λ(x, ω) a
vector Lagrange multiplier, the dual to the wave displace-
ment ξ(x, ω). The predicted travel times are linear func-
tionals of wave displacement ξ. The helioseismic wave
operator L comprises temporally stationary model prop-
erties, which we attempt to determine. We reproduce it
here in the temporal-frequency domain (e.g., [7]),

Lξ = −ω2ρξ − iωρΓξ − 2iωρv ·∇ξ (2)

−∇(c2ρ∇ · ξ)−∇(ξ ·∇p) + g∇ · (ρξ)

− 1

4π
(∇×B)×[∇×(ξ×B)]− 1

4π
{∇×[∇×(ξ×B)]}×B,

where the properties of interest are the density ρ, sound
speed c, vector magnetic field B and flows v. Wave
damping is denoted by Γ and gravity by g, where these
are held fixed and not considered to be parameters here,
the justifications for which may be found in [7]. Accelera-
tion, wave damping, and Doppler shifting by flow advec-
tion are the first two terms of operator (2), the isotropic
wavespeed term and buoyancy terms form the second
line and the final two terms are due to the anisotropic
Lorentz force. Background pressure p is constrained by
the magneto-hydrostatic (MHS) equilibrium equation

∇p = −ρg+∇ ·
(

BB− B ·B
2

I

)

, (3)

where I is the identity tensor. Two scalar thermal param-
eters, density and sound speed, and two vector quantities,
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flows and magnetic fields, are the independent variables
that we invert for and pressure is constrained by equa-
tion (3).
Given wave operator (2), we study in detail the vari-

ation of the cost function (1) to obtain the gradients of
the travel-time misfit functional with respect to model
parameters (e.g., [7, 8]). These gradients, also known as
sensitivity kernels or Fréchet derivatives, are indicators
of information in the seismic wavefield and their sensi-
tivity to relevant model parameters. The computational
realization of this method ([7, 8]) for two-point correla-
tion function measurements, as in the Sun, requires cal-
culating a predictive so-called forward wavefield and an
adjoint wavefield that assimilates the misfit. Sensitivity
kernels for various physical quantities (which form the
corrector) emerge from a temporal convolution of these
two wave fields, allowing us to pose an inverse problem
of the form

δχ = −
∫

⊙

dxKc δc+Kv · δv+KB · δB+K ′

ρ δ ln ρ, (4)

whereKc,Kv,KB are sensitivity kernels for sound speed,
flows and magnetic fields, while K ′

ρ the kernel for den-
sity, termed as an impedance kernel in geophysics jargon,
is sensitive to reflectors (e.g., [9]). Equation (4) states
that the measured travel-time shift comprises a sum of
volume integrals of these perturbations weighted by the
corresponding finite-frequency wave sensitivities. Travel
times are very weakly sensitive to density variations but
record sharp contrasts in impedance, such as (possibly)
the horizontal boundary of a sunspot. We do not expect
to be able to image such reflections since the wavelength
of waves that we consider are large in comparison to pos-
sible rapid variations, but retain and compute these ker-
nels in any case (see Figures 2 and 4 of supplemental
material).
A critical aspect to setting up an inverse problem is

in appreciating the physical variables to which waves are
sensitive. It is seen that the variation of the operator (2)
has terms (among others) that contain ρ δc2, ρ δv and δB
(see also detailed expressions for kernels in [7]). This im-
mediately tells us that kernels for sound speed and flows
are weighted by the density of the model, in contrast to
kernels for the primitive magnetic field. Further, vari-
ables c and v are forms of wavespeed, which suggests
the use of Alfvén velocity, a = B/

√
4πρ instead of the

primitive B field. One may conceive of it as a descriptor
of the anisotropic wave velocity to which waves are di-
rectly sensitive. Straightforward manipulation allows us
to rewrite the kernels as follows

δB = δ(a
√

4πρ) =
√

4πρ δa+
1

2
a
√

4πρ δ ln ρ, (5)

which together with equation (4) gives

√

4πρKB = Ka K ′

ρ → K ′

ρ +
1

2
Ka · a, (6)

thus providing a new expression for variations in the mis-
fit

δχ = −
∫

⊙

dxKc δc+Kv · δv +Ka · δa+K ′

ρ δ ln ρ. (7)

We note that the first three terms represent three types
of wavespeeds, an isotropic sound speed, an advection re-
lated flow velocity and lastly, an intrinsically anistropic
velocity. Although not shown here, weighting the mag-
netic field kernels by the square-root of density redis-
tributes incoherent sensitivity from the upper-most at-
mospheric layers to the photosphere and shallow interior.
The transformation for the density kernel in equation (5)
now contains a contribution from the Alfvén velocity, and
could in principle be used to image reflections off sharp
velocity contrasts.
The single-scattering first-Born approximation cannot

capture the full scope of wave propagation in strong per-
turbations such as sunspots (i.e., with respect to the quiet
Sun; e.g., [10]). This implies that inversions for the sub-
surface structure of sunspots are likely to require an iter-
ative algorithm, since we have to sequentially refine the
predicted travel times, which are nonlinearly related to
changes in the model. Thus, in the analysis here, we
construct a ‘sunspot’ in MHS equilibrium (Eq. [3]) and
determine sensitivity kernels relative to this model.
We introduce a 2-D stream function ψ(x, z) such that

the magnetic field is given by B = (−∂zψ, ∂xψ). Since
g = (0,−g), Lorentz forces in the x direction are solely
balanced by the pressure gradient in equation (3), i.e.,
∂xp = ∂x(B

2
x/2−B2

z/2)+ ∂z(BxBz). From this equation
we calculate the pressure distribution required to support
this field configuration and then use the z component of
equation (3) to obtain the associated density. Generat-
ing an MHS state is non trivial since density and pres-
sure decrease exponentially as a function of height above
the photosphere; consequently, a large range of choices
for the field configuration results in negative pressures or
densities or both. Field configurations with strong hori-
zontal and vertical fields also require the action of flows
to maintain force balance, an aspect we do not consider
here because the complexity of such a model renders diffi-
cult the interpretation of the attendant kernels. We show
one example field configuration in Figure 1.
A major difficulty in simulating wave propagation

through strong magnetic fields is that Alfvén speed ||a||
becomes extremely large in the atmospheric layers of the
Sun (due to the exponentially rapidly decreasing den-
sity), resulting in a very stiff differential equation. Fur-
ther, wave travel times are very weakly sensitive to the
dynamics of these layers because the modes are trapped
below the photosphere. A multiplicative prefactor is in-
troduced to control the amplitude of the Lorentz force
terms in (2), (e.g., [4, 11]). However, this method results
in a model that is not seismically reciprocal (e.g., [7]), a
central requirement in the formal interpretation of helio-
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FIG. 1. Magnetic field configuration in our calculations.
Top panels show Aflvén speeds ax = Bx/

√
4πρ and az =

Bz/
√
4πρ, which are signed quantities. The bottom left panel

is the ratio of the absolute Alfvén speed to the local sound
speed and is seen to be on the order of 1 at the photosphere.
The field is relatively weak with the highest Alfvén speed
around 35 km/s and a Wilson depression of 250 km. (for an
expanded view, see Figure 1 of the supplemental material)

seismic measurements and the determination of sensitiv-
ity kernels. Here, in order to maintain seismic reciprocity
while still saturating the Alfvén speed at 40 km/s, we di-
rectly multiply the magnetic field by a prefactor. While
this results in a background field configuration that has a
non-zero divergence, we note that small-amplitude oscil-
lations about this field are still divergence free. Further,
in the scheme of linear inversions for magnetic structure,
the divergence-free nature of the background field is not
a strict requirement but could be considered a regular-
ization term.
We perform linear magneto-hydrodynamic (MHD)

wave propagation simulations in Cartesian geometry, us-
ing the pseudo-spectral code SPARC ([12–14]). Hor-
izontal derivatives are computed using Fast Fourier
Transforms, vertical derivatives are estimated on a non-
uniform grid using compact finite differences ([15]) and
time-stepping is effected through the repeated applica-
tion of an optimized Runge-Kutta scheme ([16]). Ver-
tical boundaries are lined with absorbent convolutional
perfectly matched layers ([17]) that are designed to ab-
sorb MHD waves as well. We implement a phenomeno-
logical wave damping term along the lines of the recipe
suggested by [18]. Because we restrict ourselves to a 2-D
field configuration in this problem, Aflvén waves are dis-
allowed and only magneto-acoustic fast and slow waves
propagate.
We focus here on the diagnostic ability of the surface

f and acoustic p1 modes, so chosen because of their sig-
nificant sensitivity to surface layers. The measurement
consists of ridge filters applied to isolate these modes.
The sunspot is assumed to be located at disk center,
implying that the line-of-sight component is co-aligned
with the (vertical) z axis. Thus the vertical wavefield
displacement is used to define the cross correlation mea-
surement. We show the power spectra and cross cor-
relations in Figure 2. We employ the linear travel-time
definition ([6, 19]), also used previously by [7] to estimate
travel time shifts from cross correlations.

FIG. 2. Expectation value of the power spectrum of the p1
and f ridge-filtered measurements (top panels). The limit
cross correlation C(t) between a point 15 Mm from the left
of the sunspot center to a point 10 Mm on the right of the
center is shown for the p1 measurement (middle panel). The
f -mode cross correlation is between the center of the sunspot
and a point 10 Mm to the right (bottom panel). See Fig-
ures 3 and 4 also. The positive-time branch is sensitive to
waves that first arrive at one measurement point and subse-
quently at the other and vice versa. The loss of translational
variance implies that the absolute locations of the points mat-
ter. The dot-dash boxes indicate the measurement windows.
Travel time shifts of waves are obtained by estimating the
deviation of the cross correlation from a reference wavelet.
Mean travel times, defined as the average of the time shifts of
oppositely traveling waves, are thought to be largely sensitive
to structure. Difference travel times, defined as the differ-
ence between the shifts, are considered primarily sensitive to
symmetry-breaking flows. (for an expanded view, see Figure
2 of the supplemental material)

Figure 3 (see also Figures 5 and 6 in the supplemental
material) displays the sensitivity of the surface f -mode to
the sunspot. Because we model waves as finite spatial ob-
jects, their sensitivities extend beyond just the ray path.
It can be seen that the effect of the spot is significant
in that the kernels are noticeably asymmetric between
the point-pair. The time shifts induced by the magnetic
field are considerable, comparable in magnitude to those
induced by flow and thermal perturbations. There are
hints of mode conversion from f to p1 in the difference
kernel for sound speed (top), just below the pixel on the
right.

In Figure 4 (see also Figures 7 and 8 in the supplemen-
tal material), we show a set of difference p1-mode kernels
for a point pair separated by a distance of 25 Mm re-
spectively. Because the magnetic field is relatively weak
compared to a sunspot, the acoustic p1 mode, whose en-
ergy is focused in the sub-surface layers, is much less af-
fected by the field than the f mode. Symmetry is nearly
completely restored to the p1 kernels.

The Alfvén speed kernels for both f and p1 modes show
features of high spatial frequency, and contain signatures
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FIG. 3. f -mode (surface) wavespeed kernels for a difference
travel-time measurement between a point-pair 10 Mm apart.
Kernels sensitive to isotropic sound speed, Alfvén speed ax

and vertical flows vz are shown. The boundary of the spot,
marked by the solid black line, is much smaller than the hor-
izontal wavelength. The horizontal dot-dash line denotes the
height at which observations are made in the quiet Sun and
the symbols mark the measurement points. The f -mode is
seen to be significantly affected by the spot, as seen in the loss
in symmetry of the kernels. Signatures of magneto-acoustic
slow and fast modes and hints of conversion to acoustic p1
may be plausibly discerned upon examination. The integrals
of the kernels show that the travel times are significantly af-
fected by the presence of even this relatively weak magnetic
field. (for an expanded view, see Figure 3 of the supplemental
material)

FIG. 4. p1-mode wavespeed kernels for a difference travel-
time measurement between a point-pair 25 Mm apart. The
panels from top to bottom show kernels sensitive to sound
speed (top), Alfvén speeds ax and vertical flows vz. The
boundary of the spot, marked by the solid black line, is much
smaller than the horizontal wavelength. The horizontal dot-
dash line denotes the height at which observations are made in
the quiet Sun and the symbols mark the measurement points.
Plausible signatures of slow modes propagating down into the
tube may be discerned in the middle panel. (for an expanded
view, see Figure 4 of the supplemental material)

of fast and slow magneto-acoustic waves. In the umbral
regions of the sunspot, waves of high spatial frequency
are seen to be propagating toward the interior (plausibly
slow waves).

Our computations support the view that inversions
for sunspots, especially when using surface modes, are
greatly over-simplified if anisotropic wave speeds are
not taken into account. The realization of this method
has required a number of theoretical and numerical ad-
vances, paving the way for seismic imaging of magneto-
convection in the solar interior.
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