Skip to main content

Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow

Author(s): Bertin, V; Niven, J; Stone, Howard A; Salez, T; Raphaël, E; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1q29f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBertin, V-
dc.contributor.authorNiven, J-
dc.contributor.authorStone, Howard A-
dc.contributor.authorSalez, T-
dc.contributor.authorRaphaël, E-
dc.contributor.authorDalnoki-Veress, K-
dc.date.accessioned2021-10-08T20:19:06Z-
dc.date.available2021-10-08T20:19:06Z-
dc.date.issued2020en_US
dc.identifier.citationBertin, V, Niven, J, Stone, HA, Salez, T, Raphaël, E, Dalnoki-Veress, K. (2020). Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. Physical Review Letters, 124 (10.1103/PhysRevLett.124.184502en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1q29f-
dc.description.abstractWe present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rightsAuthor's manuscripten_US
dc.titleSymmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flowen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevLett.124.184502-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow.pdf955.63 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.