Skip to main content

A p-ADIC WALDSPURGER FORMULA

Author(s): Liu, Yifeng; Zhang, Shou-Wu; Zhang, Wei

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pt2j
Abstract: In this article, we study p-adic torus periods for certain p-adic-valued functions on Shimura curves of classical origin. We prove a p-adic Waldspurger formula for these periods as a generalization of recent work of Bertolini, Darmon, and Prasanna. In pursuing such a formula, we construct a new anti-cyclotomic p-adic L-function of Rankin-Selberg type. At a character of positive weight, the p-adic L-function interpolates the central critical value of the complex Rankin-Selberg L-function. Its value at a finite-order character, which is outside the range of interpolation, essentially computes the corresponding p-adic torus period.
Publication Date: 15-Mar-2018
Electronic Publication Date: 9-Feb-2018
Citation: Liu, Yifeng, Zhang, Shouwu, Zhang, Wei. (2018). A p-ADIC WALDSPURGER FORMULA. DUKE MATHEMATICAL JOURNAL, 167 (743 - 833). doi:10.1215/00127094-2017-0045
DOI: doi:10.1215/00127094-2017-0045
ISSN: 0012-7094
EISSN: 1547-7398
Pages: 743 - 833
Type of Material: Journal Article
Journal/Proceeding Title: DUKE MATHEMATICAL JOURNAL
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.