Skip to main content

A p-ADIC WALDSPURGER FORMULA

Author(s): Liu, Yifeng; Zhang, Shou-Wu; Zhang, Wei

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pt2j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Yifeng-
dc.contributor.authorZhang, Shou-Wu-
dc.contributor.authorZhang, Wei-
dc.date.accessioned2019-04-05T19:45:00Z-
dc.date.available2019-04-05T19:45:00Z-
dc.date.issued2018-03-15en_US
dc.identifier.citationLiu, Yifeng, Zhang, Shouwu, Zhang, Wei. (2018). A p-ADIC WALDSPURGER FORMULA. DUKE MATHEMATICAL JOURNAL, 167 (743 - 833). doi:10.1215/00127094-2017-0045en_US
dc.identifier.issn0012-7094-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pt2j-
dc.description.abstractIn this article, we study p-adic torus periods for certain p-adic-valued functions on Shimura curves of classical origin. We prove a p-adic Waldspurger formula for these periods as a generalization of recent work of Bertolini, Darmon, and Prasanna. In pursuing such a formula, we construct a new anti-cyclotomic p-adic L-function of Rankin-Selberg type. At a character of positive weight, the p-adic L-function interpolates the central critical value of the complex Rankin-Selberg L-function. Its value at a finite-order character, which is outside the range of interpolation, essentially computes the corresponding p-adic torus period.en_US
dc.format.extent743 - 833en_US
dc.language.isoen_USen_US
dc.relation.ispartofDUKE MATHEMATICAL JOURNALen_US
dc.rightsAuthor's manuscripten_US
dc.titleA p-ADIC WALDSPURGER FORMULAen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1215/00127094-2017-0045-
dc.date.eissued2018-02-09en_US
dc.identifier.eissn1547-7398-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1511.08172v1.pdf638.01 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.