Skip to main content

Strong topological metal material with multiple Dirac cones

Author(s): Ji, Huiwen; Pletikosić, Ivo's; Gibson, Quinn D.; Sahasrabudhe, Girija S.; Valla, Tonica; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pb0d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJi, Huiwen-
dc.contributor.authorPletikosić, Ivo's-
dc.contributor.authorGibson, Quinn D.-
dc.contributor.authorSahasrabudhe, Girija S.-
dc.contributor.authorValla, Tonica-
dc.contributor.authorCava, Robert Joseph-
dc.date.accessioned2019-08-29T17:04:35Z-
dc.date.available2019-08-29T17:04:35Z-
dc.date.issued2016-01-15en_US
dc.identifier.citationJi, H., Pletikosić, I., Gibson, Q.D., Sahasrabudhe, G., Valla, T., Cava, R.J. (2016). Strong topological metal material with multiple Dirac cones. Physical Review B - Condensed Matter and Materials Physics, 93 (4), 10.1103/PhysRevB.93.045315en_US
dc.identifier.issn1098-0121-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pb0d-
dc.descriptionPhysical Review B. Volume 93, Issue 4, 25 January 2016, Article number 045315.en_US
dc.description.abstract© 2016 American Physical Society.We report a new, cleavable, strong topological metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, and observed using angle-resolved photoemission spectroscopy, making Zr2Te2P the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO2. We propose that if EF can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.en_US
dc.format.extent93.4:045315-1 -045315-6en_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleStrong topological metal material with multiple Dirac conesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevB.93.045315-
dc.date.eissued2016-01-25en_US
dc.identifier.eissn1550-235X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevB.93.045315.pdf1.43 MBAdobe PDFView/Download
medium (71).png135.09 kBimage/pngThumbnail
View/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.