Skip to main content

Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load

Author(s): Tepper, Naama; Noor, Elad; Amador-Noguez, Daniel; Haraldsdóttir, Hulda S; Milo, Ron; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nk3z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTepper, Naama-
dc.contributor.authorNoor, Elad-
dc.contributor.authorAmador-Noguez, Daniel-
dc.contributor.authorHaraldsdóttir, Hulda S-
dc.contributor.authorMilo, Ron-
dc.contributor.authorRabinowitz, Josh-
dc.contributor.authorLiebermeister, Wolfram-
dc.contributor.authorShlomi, Tomer-
dc.date.accessioned2022-01-25T14:47:54Z-
dc.date.available2022-01-25T14:47:54Z-
dc.date.issued2013-01en_US
dc.identifier.citationTepper, Naama, Noor, Elad, Amador-Noguez, Daniel, Haraldsdóttir, Hulda S, Milo, Ron, Rabinowitz, Josh, Liebermeister, Wolfram, Shlomi, Tomer. (2013). Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.. PloS one, 8 (9), e75370 - e75370. doi:10.1371/journal.pone.0075370en_US
dc.identifier.issn1932-6203-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nk3z-
dc.description.abstractSteady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity) and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW), which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.en_US
dc.format.extente75370 - e75370en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofPloS Oneen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleSteady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite loaden_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.pone.0075370-
dc.identifier.eissn1932-6203-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
journal.pone.0075370.PDF2.19 MBAdobe PDFView/Download
journal.pone.0075370.g001.png854.09 kBimage/pngThumbnail
View/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.