Skip to main content

A LOCAL STRENGTHENING OF REED’S omega, Delta, chi CONJECTURE FOR QUASI- LINE GRAPHS

Author(s): Chudnovsky, Maria; King, Andrew D; Plumettaz, Matthieu; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nh36
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorKing, Andrew D-
dc.contributor.authorPlumettaz, Matthieu-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:09:05Z-
dc.date.available2018-07-20T15:09:05Z-
dc.date.issued2013en_US
dc.identifier.citationChudnovsky, Maria, King, Andrew D, Plumettaz, Matthieu, Seymour, Paul. (2013). A LOCAL STRENGTHENING OF REED’S omega, Delta, chi CONJECTURE FOR QUASI- LINE GRAPHS. SIAM JOURNAL ON DISCRETE MATHEMATICS, 27 (95 - 108. doi:10.1137/110847585en_US
dc.identifier.issn0895-4801-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nh36-
dc.description.abstractReed’s omega, Delta, chi conjecture proposes that every graph satisfies chi <= inverted right perpendicular1/2 (Delta + 1 + omega)inverted left perpendicular; it is known to hold for all claw-free graphs. In this paper we consider a local strengthening of this conjecture. We prove the local strengthening for line graphs, then note that previous results immediately tell us that the local strengthening holds for all quasi-line graphs. Our proofs lead to polytime algorithms for constructing colorings that achieve our bounds: O(n(2)) for line graphs and O(n(3)m(2)) for quasi-line graphs. For line graphs, this is faster than the best known algorithm for constructing a coloring that achieves the bound of Reed’s original conjecture.en_US
dc.format.extent95 - 108en_US
dc.language.isoen_USen_US
dc.relation.ispartofSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleA LOCAL STRENGTHENING OF REED’S omega, Delta, chi CONJECTURE FOR QUASI- LINE GRAPHSen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1137/110847585-
dc.date.eissued2013-01-17en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1109.2112.pdf341.8 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.