Skip to main content

Deep neural network for the dielectric response of insulators

Author(s): Zhang, Linfeng; Chen, Mohan; Wu, Xifan; Wang, Han; E, Weinan; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n58cm24
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Linfeng-
dc.contributor.authorChen, Mohan-
dc.contributor.authorWu, Xifan-
dc.contributor.authorWang, Han-
dc.contributor.authorE, Weinan-
dc.contributor.authorCar, Roberto-
dc.date.accessioned2024-06-06T13:57:54Z-
dc.date.available2024-06-06T13:57:54Z-
dc.date.issued2020-06-12en_US
dc.identifier.citationZhang, Linfeng, Chen, Mohan, Wu, Xifan, Wang, Han, E, Weinan, Car, Roberto. (Deep neural network for the dielectric response of insulators. Physical Review B, 102 (4), 10.1103/physrevb.102.041121en_US
dc.identifier.issn2469-9950-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n58cm24-
dc.description.abstractWe introduce a deep neural network to model in a symmetry preserving way the environmental dependence of the centers of the electronic charge. The model learns from ab initio density functional theory, wherein the electronic centers are uniquely assigned by the maximally localized Wannier functions. When combined with the deep potential model of the atomic potential energy surface, the scheme predicts the dielectric response of insulators for trajectories inaccessible to direct ab initio simulation. The scheme is nonperturbative and can capture the response of a mutating chemical environment. We demonstrate the approach by calculating the infrared spectra of liquid water at standard conditions, and of ice under extreme pressure, when it transforms from a molecular to an ionic crystal.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleDeep neural network for the dielectric response of insulatorsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/physrevb.102.041121-
dc.identifier.eissn2469-9969-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Deep neural network for the dielectric response of insulators.pdf516.04 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.