Skip to main content

Claw-free graphs. VII. Quasi-line graphs

Author(s): Chudnovsky, Maria; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n08k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:08:23Z-
dc.date.available2018-07-20T15:08:23Z-
dc.date.issued2012-11en_US
dc.identifier.citationChudnovsky, Maria, Seymour, Paul. (2012). Claw-free graphs. VII. Quasi-line graphs. JOURNAL OF COMBINATORIAL THEORY SERIES B, 102 (1267 - 1294. doi:10.1016/j.jctb.2012.07.005en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n08k-
dc.description.abstractA graph is a quasi-line graph if for every vertex v. the set of neighbours of v is expressible as the union of two cliques. Such graphs are more general than line graphs, but less general than claw-free graphs. Here we give a construction for all quasi-line graphs; it turns out that there are basically two kinds of connected quasi-line graphs, one a generalization of line graphs, and the other a subclass of circular arc graphs. (c) 2012 Elsevier Inc. All rights reserved.en_US
dc.format.extent1267 - 1294en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleClaw-free graphs. VII. Quasi-line graphsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2012.07.005-
dc.date.eissued2012-09-03en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1-s2.0-S0095895612000524-main.pdf394.3 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.