Claw-free graphs. VII. Quasi-line graphs

Maria Chudnovsky ${ }^{\text {a, } 1}$, Paul Seymour ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Columbia University, New York, NY 10027, United States
${ }^{\text {b }}$ Princeton University, Princeton, NJ 08544, United States

ARTICLE INFO

Article history:

Received 20 June 2009
Available online 3 September 2012

Keywords:

Induced subgraph
Claw-free
Quasi-line
Structure theorem

Abstract

A graph is a quasi-line graph if for every vertex v, the set of neighbours of v is expressible as the union of two cliques. Such graphs are more general than line graphs, but less general than claw-free graphs. Here we give a construction for all quasi-line graphs; it turns out that there are basically two kinds of connected quasi-line graphs, one a generalization of line graphs, and the other a subclass of circular arc graphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) If $X \subseteq V(G)$, the subgraph $G \mid X$ induced on X is the subgraph with vertex set X and edge set all edges of G with both ends in X. ($V(G)$ and $E(G)$ denote the vertex and edge sets of G, respectively.) We say that $X \subseteq V(G)$ is a claw in G if $|X|=4$ and $G \mid X$ is isomorphic to the complete bipartite graph $K_{1,3}$. We say G is claw-free if no $X \subseteq V(G)$ is a claw in G.

In the earlier papers of this sequence, we gave a construction for all claw-free graphs; we proved that every claw-free graph can be built by piecing together building blocks from some explicitlydescribed classes. See [1] for a survey of this material.

A graph G is a quasi-line graph if for every vertex v, the set of neighbours of v can be partitioned into two sets A, B in such a way that A and B are both cliques. (Note that there may be edges between A and B.) Thus all line graphs are quasi-line graphs, and all quasi-line graphs are claw-free, but both converse statements are false. Quasi-line graphs make an interesting half-way stage between line graphs and claw-free graphs; for instance, a number of theorems about line graphs extend to quasi-line graphs and yet not to claw-free graphs in general.

[^0]The purpose of this paper is to give a construction for all quasi-line graphs in the same way as the previous papers of this sequence gave a construction for all claw-free graphs. For the most part, we just specialize the earlier theorem; we have to understand which graphs built from our earlier construction are quasi-line graphs. Mostly this is straightforward, but there is some difficulty when the stability number is small. For instance, all graphs with stability number two are claw-free, and such graphs were one of our "building block" types; but they are not all quasi-line, and it is nontrivial to figure out which such graphs are indeed quasi-line. A similar (but easier) situation arises with stability number three, as we shall see. Most of the work of this paper arises from trying to analyse the cases when stability number is at most three.

To state the main theorem we need a number of definitions. First, as in the earlier papers, we work with slightly more general objects than graphs, that we call "trigraphs". A trigraph G consists of a finite set $V(G)$ of vertices, and a map $\theta_{G}: V(G)^{2} \rightarrow\{1,0,-1\}$, satisfying:

- for all $v \in V(G), \theta_{G}(v, v)=0$,
- for all distinct $u, v \in V(G), \theta_{G}(u, v)=\theta_{G}(v, u)$,
- for all distinct $u, v, w \in V(G)$, at most one of $\theta_{G}(u, v), \theta_{G}(u, w)=0$.

For distinct u, v in $V(G)$, we say that u, v are strongly adjacent if $\theta_{G}(u, v)=1$, strongly antiadjacent if $\theta_{G}(u, v)=-1$, and semiadjacent if $\theta_{G}(u, v)=0$. We say that u, v are adjacent if they are either strongly adjacent or semiadjacent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. Also, we say u is adjacent to v and u is a neighbour of v if u, v are adjacent (and a strong neighbour if u, v are strongly adjacent); u is antiadjacent to v and u is an antineighbour of v if u, v are antiadjacent (and a strong antineighbour if u, v are strongly antiadjacent).

For a vertex a and a set $B \subseteq V(G) \backslash\{a\}$, we say that a is complete to B or B-complete if a is adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete if a is antiadjacent to every vertex in B. For two disjoint subsets A and B of $V(G)$ we say that A is complete, respectively anticomplete, to B, if every vertex in A is complete, respectively anticomplete, to B. (We sometimes say A is B-complete, or the pair (A, B) is complete, meaning that A is complete to B.) Similarly, we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on. Let us say a trigraph G is connected if there is no partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ such that $V_{1}, V_{2} \neq \emptyset$ and V_{1} is strongly anticomplete to V_{2}. A clique in G is a subset $X \subseteq V(G)$ such that every two members of X are adjacent, and a strong clique is a subset such that every two of its members are strongly adjacent. A subset of $V(G)$ is stable if every two of its members are antiadjacent, and strongly stable if every two of its members are strongly antiadjacent. A trigraph G is quasi-line if for every vertex v, the set of neighbours of v is the union of two strong cliques. Our objective is to describe all quasi-line trigraphs.

We say a trigraph H is a thickening of a trigraph G if for every $v \in V(G)$ there is a nonempty subset $X_{v} \subseteq V(H)$, all pairwise disjoint and with union $V(H)$, satisfying the following:

- for each $v \in V(G), X_{v}$ is a strong clique of H,
- if $u, v \in V(G)$ are strongly adjacent in G then X_{u} is strongly complete to X_{v} in H,
- if $u, v \in V(G)$ are strongly antiadjacent in G then X_{u} is strongly anticomplete to X_{v} in H,
- if $u, v \in V(G)$ are semiadjacent in G then X_{u} is neither strongly complete nor strongly anticomplete to X_{v} in H.

This thickening is non-trivial if $|V(H)|>|V(G)|$.
Let Σ be a circle, and let $F_{1}, \ldots, F_{k} \subseteq \Sigma$ be homeomorphic to the interval $[0,1]$, such that no two of F_{1}, \ldots, F_{k} share an endpoint. Now let $V \subseteq \Sigma$ be finite, and let G be a trigraph with vertex set V in which, for distinct $u, v \in V$,

- if $u, v \in F_{i}$ for some i then u, v are adjacent, and if also at least one of u, v belongs to the interior of F_{i} then u, v are strongly adjacent,
- if there is no i such that $u, v \in F_{i}$ then u, v are strongly antiadjacent.

Such a trigraph G is called a circular interval trigraph, and if in addition no three of F_{1}, \ldots, F_{k} have union Σ, we say G is a long circular interval trigraph. It is easy to see that circular interval trigraphs are quasi-line.

The same construction, using a line rather than a circle, yields the "linear interval trigraphs". More precisely, we say G is a linear interval trigraph if its vertex set can be numbered $\left\{v_{1}, \ldots, v_{n}\right\}$ in such a way that for $1 \leqslant i<j<k \leqslant n$, if v_{i}, v_{k} are adjacent then v_{j} is strongly adjacent to both v_{i}, v_{k}. Given such a trigraph G and numbering v_{1}, \ldots, v_{n} with $n \geqslant 2$, we call $\left(G,\left\{v_{1}, v_{n}\right\}\right)$ a linear interval stripe if no vertex is semiadjacent to v_{1} or to v_{n}, and v_{1}, v_{n} are strongly antiadjacent, and there is no vertex adjacent to both v_{1}, v_{n}.

A spot is a pair (G, Z) such that G has three vertices say v, z_{1}, z_{2}, and v is strongly adjacent to z_{1}, z_{2}, and z_{1}, z_{2} are strongly antiadjacent, and $Z=\left\{z_{1}, z_{2}\right\}$.

Let G be a circular interval trigraph, and let $\Sigma, F_{1}, \ldots, F_{k}$ be as in the corresponding definition. Let $z \in V(G)$ belong to at most one of F_{1}, \ldots, F_{k}; and if $z \in F_{i}$ say, let no vertex be an endpoint of F_{i}. We call the pair ($G,\{z\}$) a bubble.

If H is a thickening of G, where $X_{v}(v \in V(G))$ are the corresponding subsets, and $Z \subseteq V(G)$ and $\left|X_{v}\right|=1$ for each $v \in Z$, let Z^{\prime} be the union of all $X_{v}(v \in Z)$; we say that $\left(H, Z^{\prime}\right)$ is a thickening of (G, Z).

Here is a construction; a trigraph G that can be constructed in this manner is called a linear interval join.

- Start with a trigraph H_{0} that is a disjoint union of strong cliques. Let $X_{1}, \ldots, X_{k} \subseteq V\left(H_{0}\right)$ be pairwise disjoint strongly stable sets, each of cardinality one or two, and with union $V\left(H_{0}\right)$.
- For $1 \leqslant i \leqslant k$, let $\left(G_{i}, Y_{i}\right)$ be either a spot, or a thickening of a bubble, or a thickening of a linear interval stripe, where $H_{0}, G_{1}, \ldots, G_{k}$ are pairwise vertex-disjoint, and such that $\left|X_{i}\right|=\left|Y_{i}\right|$ for $1 \leqslant i \leqslant k$; and for each i, take a bijection between X_{i} and Y_{i}.
- We define H_{1}, \ldots, H_{k} recursively as follows. For $1 \leqslant i \leqslant k$, having defined H_{i-1}, let H_{i} be the trigraph obtained from the disjoint union of H_{i-1} and G_{i} by making the neighbour set of x in H_{i-1} strongly complete to the neighbour set of y in G_{i}, and then deleting x, y, for each $x \in X_{i}$ and its mate $y \in Y_{i}$. (The order of these operations does not affect the final outcome.)
- Let $G=H_{k}$.

Note that if each $\left(G_{i}, Y_{i}\right)$ is a spot, then the trigraph we construct is a line graph of a multigraph. Now we can state our main theorem:
1.1. Every connected quasi-line trigraph is either a linear interval join or a thickening of a circular interval trigraph.

2. Quasi-line trigraphs with no triad

If G is a trigraph and $X \subseteq V(G)$, we define the trigraph $G \mid X$ induced on X as follows. Its vertex set is X, and its adjacency function is the restriction of θ_{G} to X^{2}. Isomorphism for trigraphs is defined in the natural way, and if G, H are trigraphs, we say that G contains H and H is a subtrigraph of G if there exists $X \subseteq V(G)$ such that H is isomorphic to $G \mid X$. Let us say an anticycle in a trigraph G is a subtrigraph C with vertex set $\left\{v_{1}, \ldots, v_{k}\right\}$, where $k \geqslant 3, v_{i}, v_{i+1}$ are antiadjacent for $1 \leqslant i<k$, and v_{1}, v_{k} are antiadjacent; we call k the length of the anticycle, and say the anticycle is odd if k is odd. A vertex v is a centre for an anticycle C if $v \notin V(C)$ and v is adjacent to every vertex of C. Thus, G is quasi-line if and only if no odd anticycle has a centre.

A triad in a trigraph G means a stable set with cardinality three. A claw in a trigraph G is a subset $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\} \subseteq V(G)$, such that $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triad and a_{0} is complete to $\left\{a_{1}, a_{2}, a_{3}\right\}$. If no subset of $V(G)$ is a claw, we say that G is claw-free.

A 5 -wheel is a trigraph with six vertices v_{1}, \ldots, v_{6}, where for $1 \leqslant i<j \leqslant 5$, if $j-i \in\{1,4\}$ then v_{i}, v_{j} are adjacent, and if $j-i \in\{2,3\}$ then v_{i}, v_{j} are antiadjacent, and v_{6} is adjacent to all of v_{1}, \ldots, v_{5}. (For the reader's convenience, we follow the convention that when we list the vertices of a 5 -wheel, we list them in the order just given.)

In [5] we showed that every claw-free trigraph can be built by piecing together trigraphs from some explicitly-described basic classes, and much of the proof of 1.1 consists of figuring out which trigraphs in these basic classes are quasi-line. One basic class was the class of all trigraphs with no triad; all such trigraphs are claw-free, but mostly they are not quasi-line, so we begin in this section by studying these.

Two strongly adjacent vertices of a trigraph G are called twins if (apart from each other) they have the same neighbours and the same antineighbours in G, and if there are two such vertices, we say " G admits twins".

Let A, B be disjoint subsets of $V(G)$. The pair (A, B) is called a homogeneous pair in G if A, B are strong cliques, and for every vertex $v \in V(G) \backslash(A \cup B), v$ is either strongly A-complete or strongly A-anticomplete and either strongly B-complete or strongly B-anticomplete. Let (A, B) be a homogeneous pair, such that A is neither strongly complete nor strongly anticomplete to B, and at least one of A, B has at least two members. In these circumstances we call (A, B) a W-join.

We say a trigraph is slim if it does not admit twins or a W-join. Every trigraph G is a thickening of a slim trigraph H, and if G is quasi-line then so is H, so we may normally confine ourselves to slim trigraphs.

Let H be a graph, and let G be a trigraph with $V(G)=E(H)$. We say that G is a line trigraph of H if for all distinct $e, f \in E(H)$:

- if e, f have a common end in H then they are adjacent in G, and if they have a common end of degree at least three in H, then they are strongly adjacent in G,
- if e, f have no common end in H then they are strongly antiadjacent in G.

We will show:
2.1. Let G be a slim quasi-line trigraph with no triad. Then either G is a line trigraph of a subgraph of K_{5}, or G is a circular interval trigraph.

We begin with:
2.2. Let G be a slim quasi-line trigraph with no triad, and let $v_{1}, \ldots, v_{8} \in V(G)$ be distinct, such that $\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{6}\right\},\left\{v_{3}, v_{4}, v_{7}\right\},\left\{v_{4}, v_{1}, v_{8}\right\}$ and $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ are cliques, and every pair of vertices in $\left\{v_{1}, \ldots, v_{8}\right\}$ not contained in one of these five cliques is antiadjacent. Then G is a line trigraph of a subgraph of K_{5}.

Proof. Since $\left\{v_{1}, v_{2}, v_{7}\right\}$ is not a triad, v_{1}, v_{2} are strongly adjacent; since $\left\{v_{1}, v_{3}, v_{5}\right\}$ is not a triad, v_{1}, v_{5} are strongly adjacent; since $\left\{v_{4}, v_{5}, v_{6}\right\}$ is not a triad, v_{5}, v_{6} are strongly adjacent; and since $\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{4}, v_{8}\right\}$ does not induce a 5 -wheel, v_{5}, v_{7} are strongly adjacent. Since $\left\{v_{2}, v_{3}, v_{4}, v_{8}, v_{5}, v_{1}\right\}$ does not induce a 5 -wheel, v_{1}, v_{3} are strongly antiadjacent; and since $\left\{v_{1}, v_{2}, v_{3}, v_{7}, v_{8}, v_{6}\right\}$ does not induce a 5 -wheel, v_{1}, v_{6} are strongly antiadjacent. From the symmetry it follows that every pair of distinct members of $\left\{v_{1}, \ldots, v_{8}\right\}$ are either strongly adjacent or strongly antiadjacent. Consequently the subtrigraph induced on $\left\{v_{1}, \ldots, v_{8}\right\}$ is a line trigraph of a graph H with five vertices h_{1}, \ldots, h_{5} and eight edges

$$
h_{1} h_{2}, h_{2} h_{3}, h_{3} h_{4}, h_{1} h_{4}, h_{2} h_{5}, h_{3} h_{5}, h_{4} h_{5}, h_{1} h_{5}
$$

(in order corresponding to v_{1}, \ldots, v_{8}). For $1 \leqslant i<j \leqslant 5$, let $f_{i j}$ be the edge of H with ends h_{i}, h_{j} if it exists. (Thus we have renamed the vertices v_{1}, \ldots, v_{8} in the $f_{i j}$ notation, since this is more convenient.) For each $v \in V(G) \backslash E(H)$, we say that v is of $i j$-type (with respect to H), where $1 \leqslant i<$ $j \leqslant 5$, if for every edge $f_{i^{\prime} j^{\prime}}$ of H, v is strongly adjacent to $f_{i^{\prime} j^{\prime}}$ if and only if $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, and otherwise v is strongly antiadjacent to $f_{i^{\prime} j^{\prime}}$.
(1) For every vertex $v \in V(G) \backslash E(H)$ there exist $i<j$ such that v is of $i j$-type.

For let N be the set of neighbours of v in $E(H)$, and let M be the set of antineighbours of v in $E(H)$. Since there is no triad, not both $f_{12}, f_{34} \in M$, and not both $f_{23}, f_{14} \in M$, so we may assume that $f_{12}, f_{23} \notin M$. Suppose that $f_{34} \in M$. Since $\left\{v, f_{34}, f_{25}\right\}$ is not a triad, $f_{25} \notin M$, and similarly $f_{15} \notin M$. Suppose in addition that $f_{35} \in N$. Since $\left\{v, f_{23}, f_{34}, f_{45}, f_{15}, f_{35}\right\}$ does not induce a 5 -wheel, it follows that $f_{45} \notin M$. Since $\left\{f_{12}, f_{23}, f_{35}, f_{45}, f_{14}, v\right\}$ does not induce a 5 -wheel, $f_{14} \notin N$; since $\left\{v, f_{14}, f_{35}\right\}$ is not a triad, $f_{35} \notin M$; and since $\left\{f_{12}, f_{23}, f_{34}, f_{45}, f_{15}, v\right\}$ does not induce a 5 -wheel, $f_{34} \notin N$. But then v is of 25 -type. We may therefore assume that $f_{35} \notin N$. Since $\left\{v, f_{14}, f_{35}\right\}$ is not a triad, $f_{14} \notin M$; since $\left\{f_{15}, f_{25}, f_{23}, f_{34}, f_{14}, v\right\}$ does not induce a 5 -wheel, $f_{34} \notin N$; and since $\left\{v, f_{25}, f_{35}, f_{34}, f_{14}, f_{45}\right\}$ does not induce a 5 -wheel, $f_{45} \notin N$. But then v is of 12 -type.

We may therefore assume that $f_{34} \notin M$, and similarly that $f_{14} \notin M$. Now not both $f_{15}, f_{25} \in N$, since $\left\{f_{15}, f_{25}, f_{23}, f_{34}, f_{14}, v\right\}$ does not induce a 5 -wheel; so from the symmetry, we may assume that $f_{15}, f_{35} \notin N$. Since $\left\{v, f_{12}, f_{25}, f_{35}, f_{34}, f_{23}\right\}$ does not induce a 5 -wheel, $f_{25} \notin M$, and similarly $f_{45} \notin M$; but then v is of 24-type. This proves (1).
(2) For all distinct $v, v^{\prime} \in V(G) \backslash E(H)$, if v, v^{\prime} are of ij-type and $i^{\prime} j^{\prime}$-type respectively, then v, v^{\prime} are strongly adjacent if $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, and otherwise v, v^{\prime} are strongly antiadjacent.

For suppose first that $h_{i^{\prime}}, h_{j^{\prime}}$ are adjacent in H, and let H^{\prime} be the graph obtained from H by deleting the edge $f_{i^{\prime} j^{\prime}}$ and adding a new edge v^{\prime} with ends $h_{i^{\prime}}, h_{j^{\prime}}$. Then $E\left(H^{\prime}\right) \subseteq V(G)$, and the subtrigraph induced on $E\left(H^{\prime}\right)$ is a line trigraph of H^{\prime}. By (1) applied to v and H^{\prime}, there exist a, b with $1 \leqslant a<b \leqslant 5$ such that v is of $a b$-type with respect to H^{\prime}; that is, for $1 \leqslant c<d \leqslant 5$ with $(c, d) \neq\left(i^{\prime}, j^{\prime}\right), v$ is strongly adjacent to $f_{c d}$ if and only if $\{a, b\} \cap\{c, d\} \neq \emptyset$, and otherwise v is strongly antiadjacent to $f_{c d}$; and v is strongly adjacent to v^{\prime} if and only if $\{a, b\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, and otherwise v, v^{\prime} are strongly antiadjacent. We claim that $\{a, b\}=\{i, j\}$. There is a cycle C of H with length five, not using the edge $f_{i^{\prime} j^{\prime}}$. Consequently there are two vertices $x_{1}, x_{2} \in\left\{h_{a}, h_{b}, h_{i}, h_{j}\right\}$ such that each of x_{1}, x_{2} is adjacent in C to a vertex not in $\left\{h_{a}, h_{b}, h_{i}, h_{j}\right\}$. Let f be an edge of C with ends x_{1} and some vertex not in $\left\{h_{a}, h_{b}, h_{i}, h_{j}\right\}$. Since v has $i j$-type with respect to H, it follows that v, f are strongly adjacent in G if and only if $x_{1} \in\left\{h_{i}, h_{j}\right\}$. But also, since v has ab-type with respect to H^{\prime}, and the graphs H, H^{\prime} differ only by exchange of the edges $f_{i^{\prime}, j^{\prime}}, v^{\prime}$, and these edges are different from f, it follows that v, f are strongly adjacent in G if and only if $x_{1} \in\left\{h_{a}, h_{b}\right\}$. Consequently $x_{1} \in\left\{h_{i}, h_{j}\right\}$ if and only if $x_{1} \in\left\{h_{a}, h_{b}\right\}$; but $x_{1} \in\left\{h_{a}, h_{b}, h_{i}, h_{j}\right\}$, and so $x_{1} \in\left\{h_{a}, h_{b}\right\} \cap\left\{h_{i}, h_{j}\right\}$. The same holds for x_{2}, and so $\{i, j\}=\{a, b\}$ as claimed. But we saw that v is strongly adjacent to v^{\prime} if and only if $\{a, b\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, and otherwise v, v^{\prime} are strongly antiadjacent; and so in this case (2) holds.

We may therefore assume that $h_{i^{\prime}}, h_{j^{\prime}}$ are nonadjacent in H, and similarly h_{i}, h_{j} are nonadjacent in H. Thus $(i, j),\left(i^{\prime}, j^{\prime}\right) \in\{(1,3),(2,4)\}$, and we may assume from the symmetry that $\left(i^{\prime}, j^{\prime}\right)=(1,3)$. If also $(i, j)=(1,3)$, then v, v^{\prime} are strongly adjacent since $\left\{v, v^{\prime}, f_{25}\right\}$ is not a triad. If $(i, j)=(2,4)$ then v, v^{\prime} are strongly antiadjacent since otherwise $\left\{v^{\prime}, f_{12}, f_{25}, f_{45}, f_{34}, v\right\}$ induces a 5 -wheel. This proves (2).

From (2) it follows that if $v \in V(G) \backslash E(H)$ has $i j$-type, then h_{i}, h_{j} are nonadjacent in H, since otherwise v, $f_{i j}$ would be twins; and so every vertex in $V(G) \backslash E(H)$ has 13-type or 24-type. Moreover, any two vertices of the same type are twins, so there is at most one of each type, and it follows that G is a line trigraph of a subgraph of K_{5}. This proves 2.2.

Proof of 2.1. If $V(G)$ is expressible as the union of two strong cliques, then since G is slim it follows that $|V(G)| \leqslant 2$ and the theorem holds. Thus we may assume that G is not the union of two strong cliques, and so G contains an anticycle of odd length. Choose n minimum such that n is odd and there is an anticycle of length n. Since there is no triad it follows that $n \geqslant 5$. From the minimality of n we have:
(1) Let $v_{1}-v_{2}-\cdots-v_{n}-v_{1}$ be an anticycle of length n. Then for $1 \leqslant i<j \leqslant n, v_{i}$ and v_{j} are strongly adjacent unless $j-i=1$ or $(i, j)=(1, n)$.
(2) Let $v_{1}-v_{2}-\cdots-v_{n}-v_{1}$ be an anticycle C of length n. For every vertex $v \in V(G)$, either v is antiadjacent to a unique vertex of C, or there are exactly two vertices in C antiadjacent to v (and different from v), say $v_{i}, v_{j} ;$ and in this case either $j=i+2 \bmod n$ or $j=i-2 \bmod n$.

The claim is clear if $v \in V(C)$, so we assume that $v \notin V(C)$. Let I be the set of $i \in\{1, \ldots, n\}$ such that v, v_{i} are antiadjacent. Since v is not a centre for the odd anticycle, it follows that $I \neq \emptyset$, and we may assume that $1 \in I$. If $I=\{1\}$ then the claim holds, so we assume that there exists $i \in I \backslash\{1\}$. Now one of $v-v_{1}-\cdots-v_{i}-v, v-v_{i}-v_{i+1}-\cdots-v_{n}-v_{1}-v$ is an odd anticycle, and from the choice of n it has length at least n; and so either i is even and $i+1 \geqslant n$, or i is odd and $n-i+3 \geqslant n$. Consequently $i \in\{3, n-1\}$, and so $I \subseteq\{1,3, n-1\}$. If $3, n-1 \in I$, then $v-v_{3}-v_{4}-\cdots-v_{n-1}-v$ is an odd anticycle of length $n-2$, which is impossible; so $I=\{1,3\}$ or $I=\{1, n-1\}$. This proves (2).
(3) Let $v_{1}-v_{2}-\cdots-v_{n}-v_{1}$ be an anticycle of length n. There do not exist $u_{2}, u_{3} \in V(G) \backslash\left\{v_{1}, \ldots, v_{n}\right\}$ such that $v_{1}-u_{2}-u_{3}-v_{4}-\cdots-v_{n}-v_{1}$ is an odd anticycle and the pairs $u_{2} v_{3}$ and $v_{2} u_{3}$ are adjacent.

For suppose that such u_{2}, u_{3} exist. Let us say a square is a set $\{a, b, c, d\}$ of four distinct vertices, such that

- a, b are antiadjacent to v_{1} and strongly complete to $\left\{v_{4}, v_{5}, \ldots, v_{n}\right\}$,
- c, d are antiadjacent to v_{4} and strongly complete to $\left\{v_{5}, \ldots, v_{n}, v_{1}\right\}$,
- the pairs $b c, a d$ are adjacent, and $a c, b d$ are antiadjacent.

Since $\left\{a, b, v_{1}\right\}$ is not a triad, it follows that a, b are strongly adjacent, and similarly so are c, d. (We follow the convention that when we list the elements of a square, the element written first corresponds to a in the conditions above, and so on.)

Thus $\left\{u_{2}, v_{2}, u_{3}, v_{3}\right\}$ is a square. Consequently we may choose disjoint sets A, B with $|A|,|B| \geqslant 2$, such that

- A is anticomplete to v_{1} and strongly complete to $\left\{v_{4}, v_{5}, \ldots, v_{n}\right\}$,
- B is anticomplete to v_{4} and strongly complete to $\left\{v_{5}, \ldots, v_{n}, v_{1}\right\}$,
- for every partition of A or B into two nonempty subsets, there is a square included in $A \cup B$ that has nonempty intersection with both subsets, and
- subject to these conditions $A \cup B$ is maximal.

Since there is no triad, it follows that A, B are strong cliques. Since (A, B) is not a W -join, we may assume from the symmetry that there exists $v \in V(G) \backslash(A \cup B)$ with a neighbour and an antineighbour in A; and since $|A| \geqslant 2$ we may partition A into two nonempty subsets, the first only containing neighbours of v, and the second only containing antineighbours. Consequently we may choose a square $\{a, b, c, d\}$ such that v, a are antiadjacent and v, b are adjacent. Since $\{v, a, c\}$ is not a triad it follows that v, c are strongly adjacent. Let C be the anticycle $v_{1}-a-c-v_{4}-\cdots-v_{n}-v_{1}$, and let C^{\prime} be the anticycle $v_{1}-b-d-v_{4}-\cdots-v_{n}-v_{1}$. Since b is not a centre for C, it follows that v_{1}, b are strongly antiadjacent, and so $v \neq v_{1}$. By (1), the only vertices in $V(C) \backslash\{a\}$ antiadjacent to a are v_{1}, c, and $v \neq c$ by hypothesis, so $v \notin V(C)$, and therefore $v \notin V\left(C^{\prime}\right)$.

Suppose that d, v are antiadjacent. Since $v-a-v_{1}-b-d-v$ is an anticycle of odd length, it follows that $n=5$. By (2) applied to C and to C^{\prime}, it follows that v is strongly adjacent to v_{1}, v_{4}. If v is antiadjacent to v_{5} then $\left\{b, v, v_{1}, d, v_{5}, c\right\}$ induces a 5 -wheel; and if v is adjacent to v_{5}, then the subtrigraph induced on $\left\{v_{1}, d, a, v_{4}, c, v_{5}, b, v\right\}$ satisfies the hypotheses of 2.2 , and so G is a line trigraph of a subgraph of K_{5} and the theorem holds. Thus we may assume that d, v are strongly adjacent.

Let M be the set of antineighbours of v in $V(C)$. Since $a \in M$, (2) implies that M is one of $\{a\},\left\{a, v_{n}\right\},\left\{a, v_{4}\right\}$. If $M=\{a\}$ then v is a centre for C^{\prime}, which is impossible. If $M=\left\{a, v_{n}\right\}$, then $v-a-c-v_{4}-\cdots-v_{n}-v$ is an odd anticycle with centre b, which is impossible. Thus $M=\left\{a, v_{4}\right\}$, and so $\{a, b, v, d\}$ is a square. But then we can add v to B, contrary to the maximality of $A \cup B$. This proves (3).

For the remainder of the proof, let us fix an anticycle C of length n (we recall that n was chosen earlier), and it is convenient to number its vertices using even subscripts $c_{2}, c_{4}, \ldots, c_{2 n}$, and not in the usual order; we number the vertices (so that consecutive vertices are antiadjacent) as

$$
c_{n+1}-c_{2}-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1} .
$$

Thus for $1 \leqslant i<j \leqslant 2 n$ with i, j even, c_{i} and c_{j} are antiadjacent if and only if $j-i=n-1$ or $j-i=n+1 \bmod 2 n$. (We read all subscripts modulo $2 n$ through the remainder of this proof.) For $1 \leqslant i \leqslant 2 n$ with i even, let A_{i} be the set of all vertices antiadjacent to both c_{i+n-1}, c_{i+n+1} (and therefore strongly adjacent to every other vertex of C, by (2)); and for $1 \leqslant i \leqslant 2 n$ with i odd, let A_{i} be the set of all vertices antiadjacent to c_{i+n} and strongly adjacent to every other vertex of C. Thus $c_{i} \in A_{i}$ for $1 \leqslant i \leqslant 2 n$ with i even; and the sets $A_{1}, \ldots, A_{2 n}$ are pairwise disjoint, and have union $V(G)$ by (2). Moreover, each A_{i} is a strong clique, since there is no triad in G. (The reader may find it helpful to visualize the sets $A_{1}, \ldots, A_{2 n}$ arranged in a circle in the order $A_{1}, \ldots, A_{2 n}$; our goal is to refine this circular order by ordering the members of each set A_{i} to obtain a representation of G as a circular interval trigraph.)
(4) For $1 \leqslant i, j \leqslant 2 n$ with $i \neq j$, if $u \in A_{i}$ and $v \in A_{j}$ are antiadjacent then $j-i$ is one of $n-2, n-1, n$, $n+1, n+2$.

To see this, suppose first that one of i, j is even; say $i=2$. Now C has vertices

$$
c_{n+1}-c_{2}-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

in order, and so

$$
c_{n+1}-u-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

is also an anticycle of length n, say C^{\prime}. Since u, v are antiadjacent, (2) tells us that the set of antineighbours of v in C^{\prime} is one of $\left\{u, c_{2 n}\right\},\{u\},\left\{u, c_{4}\right\}$. Consequently the set of antineighbours of v in C is one of

$$
\emptyset, \quad\left\{c_{2 n}\right\}, \quad\left\{c_{2}, c_{2 n}\right\}, \quad\left\{c_{2}\right\}, \quad\left\{c_{2}, c_{4}\right\}, \quad\left\{c_{4}\right\} .
$$

The first is impossible by (2), and the others imply that v belongs to $A_{n}, A_{n+1}, A_{n+2}, A_{n+3}, A_{n+4}$, respectively. Thus the claim holds if i is even.

We may therefore assume that i is odd, and similarly j is odd. We may assume that $i=1$, and we therefore need to show that j is one of $n, n+2$. Suppose not; then from the symmetry we may assume that $j \geqslant n+3$. But then $j \geqslant n+4$ since j is odd, and

$$
v-c_{j-n}-c_{j+1}-c_{j+1-n}-\cdots-c_{n-1}-c_{2 n}-c_{n+1}-u-v
$$

is an odd anticycle of length $2 n+4-j \leqslant n$. Thus equality holds, since C is an odd anticycle of minimum length; and so $j=n+4$. But then

$$
c_{n+1}-u-v-c_{4}-c_{n+5}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

is an anticycle, and $\{u, v\}$ is complete to $\left\{c_{2}, c_{n+3}\right\}$, contrary to (3). This proves (4).
(5) For $1 \leqslant i \leqslant 2 n$, if $u \in A_{i}$, then

- u is strongly anticomplete to A_{n+i},
- u is either strongly complete to A_{n+i+2} or strongly anticomplete to A_{n+i+1}, and
- u is either strongly complete to A_{n+i-2} or strongly anticomplete to A_{n+i-1}.

For suppose first that i is even, say $i=n+1$. Suppose that $v \in A_{1}$, and so v is strongly adjacent to every vertex of C except c_{1}. Now

$$
u-c_{2}-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-u
$$

is an anticycle of length n, say C^{\prime}, and v is strongly adjacent to all its vertices except possibly u. Since G is quasi-line, v has a strong antineighbour in C^{\prime}, and hence u, v are strongly antiadjacent. This proves the first statement when i is even.

Next suppose that u has an antineighbour $v \in A_{3}$ and a neighbour $w \in A_{2}$. Since $v \in A_{3}$ and therefore is strongly complete to every vertex of C except c_{n+3}, it follows that $u \neq c_{n+1}$. But

$$
c_{n+1}-w-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

is an anticycle of length n, and so is

$$
u-v-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-u
$$

and $\{u, v\}$ is complete to $\left\{w, c_{n+1}\right\}$, contrary to (3). This proves the second assertion when i is even. The third assertion follows from the symmetry.

Now suppose that i is odd, say $i=1$. We have already seen that A_{1} is strongly anticomplete to A_{n+1}, so the first assertion holds. For the second, assume that u has an antineighbour $v \in A_{n+3}$ and a neighbour $w \in A_{n+2}$. Since $\left\{v, w, c_{2}\right\}$ is not a triad, v, w are strongly adjacent. But

$$
c_{n+1}-u-v-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

is an anticycle of length n, and w is a centre for it, a contradiction. This proves the second statement, and again the third follows by symmetry. This proves (5).
(6) For $1 \leqslant i \leqslant 2 n$, and $j \in\{i+n-2, i+n-1, i+n, i+n+1, i+n+2\}$, there do not exist distinct $a, b \in A_{i}$ and $c, d \in A_{j}$ such that the pairs $a c$, bd are antiadjacent and ad, bc are adjacent.

For this is clear if $j=i+n$, since A_{i} is strongly anticomplete to A_{i+n} by (5). From the symmetry we may assume that $j=i+n+1$ or $i+n+2$. Suppose first that i is even, say $i=2$, and so $j \in$ $\{n+3, n+4\}$. In both cases c, d are antiadjacent to c_{4}, and so

$$
c_{n+1}-a-c-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

and

$$
c_{n+1}-b-d-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

are anticycles of length n, and the pairs $a d$ and $b c$ are adjacent, contrary to (3).
Now suppose that i is odd, say $i=1$, and therefore $j \in\{n+2, n+3\}$. If $j=n+3$ then the same two anticycles given above still violate (3), so we may assume that $j=n+2$. Let us say a rectangle is a set $\{p, q, r, s\}$ of four distinct vertices, such that

- $p, q \in A_{1}$,
- $r, s \in A_{n+2}$, and
- the pairs $q r, p s$ are adjacent, and $p r, q s$ are antiadjacent.

By hypothesis there is a rectangle, and so we may choose disjoint sets A, B with $|A|,|B| \geqslant 2$, such that

- $A \subseteq A_{1}$, and $B \subseteq A_{n+2}$, and $|A|,|B| \geqslant 2$,
- for every partition of A or B into two nonempty subsets, there is a rectangle included in $A \cup B$ that has nonempty intersection with both subsets, and
- subject to these conditions $A \cup B$ is maximal.

Since (A, B) is not a W-join, we may assume from the symmetry that there exists $v \in V(G) \backslash(A \cup B)$ with a neighbour and an antineighbour in A; and since $|A| \geqslant 2$ we may choose a rectangle $\{p, q, r, s\}$ such that v, p are antiadjacent and v, q are adjacent. It follows that $v \notin V(C)$ (since p, q are strongly antiadjacent to c_{n+1} and strongly adjacent to all other vertices of C). Since v, p are antiadjacent and
$p \in A_{1}$, (4) implies that v belongs to one of $A_{n-1}, A_{n}, A_{n+1}, A_{n+2}, A_{n+3}$. If $v \in A_{n-1} \cup A_{n} \cup A_{n+1}$, then $v, c_{2 n}$ are antiadjacent, and so

$$
v-p-r-c_{2}-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-v
$$

is an odd anticycle of length $n+2$, and q is a centre for it, a contradiction. Thus v belongs to one of A_{n+2}, A_{n+3}, and in particular v, c_{2} are antiadjacent; and therefore v is strongly adjacent to both r, s since there is no triad. If $v \in A_{n+2}$ then $\{p, q, v, s\}$ is a rectangle, and so we may add v to B, contrary to the maximality of $A \cup B$. If $v \in A_{n+3}$ then

$$
c_{n+1}-p-v-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-c_{n+1}
$$

is an anticycle of length n with a centre s, a contradiction. This proves (6).
(7) For $1 \leqslant i \leqslant 2 n$, there do not exist distinct $v, w \in A_{i}$ such that some vertex $u \in A_{n+i-2} \cup A_{n+i-1}$ is adjacent to w and antiadjacent to v, and some vertex $x \in A_{n+i+1} \cup A_{n+i+2}$ is adjacent to w and antiadjacent to v.

For suppose that such u, x exist. First suppose that i is even, say $i=2$. Thus $u \in A_{n} \cup A_{n+1}$ and $x \in A_{n+3} \cup A_{n+4}$, and so

$$
u-v-x-c_{4}-c_{n+5}-c_{6}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-u
$$

is an anticycle of length n with a centre w, a contradiction. Next suppose that i is odd, say $i=1$. Thus $u \in A_{n-1} \cup A_{n}$ and $x \in A_{n+2} \cup A_{n+3}$. Since $v \in A_{1}$ and so is strongly adjacent to every vertex of C except c_{n+1}, it follows that $u, x \notin V(C)$. Hence and

$$
u-v-x-c_{2}-c_{n+3}-c_{4}-\cdots-c_{2 n-2}-c_{n-1}-c_{2 n}-u
$$

is an anticycle of length $n+2$ with a centre w, a contradiction. This proves (7).
From (5), (6), (7), for $1 \leqslant i \leqslant 2 n$ we can order A_{i} as $\left\{v_{1}, \ldots, v_{k}\right\}$ say, such that for $1 \leqslant h<j \leqslant k$, every vertex in $A_{n+i-2} \cup A_{n+i-1}$ that is adjacent to v_{j} is strongly adjacent to v_{h}, and every vertex in $A_{n+i+1} \cup A_{n+i+2}$ that is adjacent to v_{h} is strongly adjacent to v_{j}. We call this the natural order of A_{i}. Take a circle Σ, and $2 n$ disjoint line segments $L_{1}, \ldots, L_{2 n}$ from Σ in order. For each i, let us map the members of A_{i} injectively into L_{i} in their natural order. This gives a representation of G as a circular interval trigraph. This proves 2.1.

3. Isolated triads

A triad T in a quasi-line trigraph G is isolated if T is disjoint from every other triad. It follows that every vertex in $V(G) \backslash T$ has two strong neighbours and one strong antineighbour in T. In this section we show:
3.1. Let G be a quasi-line trigraph with an isolated triad T, such that there is no W-join (P, Q) with $P, Q \subseteq$ $V(G) \backslash T$. Then G is a circular interval trigraph.

Proof. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ be an isolated triad. For $i=1,2,3$, let C_{i} be the set of all vertices in $V(G) \backslash T$ that are strongly antiadjacent to t_{i} and (therefore) strongly adjacent to the other two members of T. Thus C_{1}, C_{2}, C_{3}, T are pairwise disjoint and have union $V(G)$. We observe first that C_{1}, C_{2}, C_{3} are strong cliques; for if say $x, y \in C_{1}$ are antiadjacent, then $\left\{x, y, t_{1}\right\}$ is a triad with nonempty intersection with T, contrary to the hypothesis.

Reading subscripts modulo 3, for $x \in V(G) \backslash C_{i}$ we define $N_{i}(x)$ to be the set of neighbours of x in C_{i}, and $M_{i}(x)$ to be the set of antineighbours of x in C_{i}.
(1) For $i=1,2,3$, if $u, v \in C_{i}$ then one of $N_{i+1}(u) \cap M_{i+1}(v), N_{i-1}(u) \cap M_{i-1}(v)=\emptyset$.

For suppose that $x \in N_{i+1}(u) \cap M_{i+1}(v)$ and $y \in N_{i-1}(u) \cap M_{i-1}(v)$. Since $\{u, v, x, y\}$ is not a claw it follows that x, y are adjacent. But then $\left\{v, t_{i-1}, x, y, t_{i+1}, u\right\}$ induces a 5 -wheel, a contradiction. This proves (1).
(2) For all distinct $i, j \in\{1,2,3\}$, if $u, v \in C_{i}$ are distinct then one of $N_{j}(u) \cap M_{j}(v), N_{j}(v) \cap M_{j}(u)=\emptyset$.

For we may assume that $i=1$ and $j=2$. Let us say a square is a set $\{a, b, c, d\}$ of four distinct vertices, with $a, b \in C_{1}$ and $c, d \in C_{2}$, such that the pairs $a c, b d$ are adjacent, and the pairs $a d, b c$ are antiadjacent. Suppose that there is a square. Consequently we may choose disjoint sets A_{1}, A_{2} with $\left|A_{1}\right|,\left|A_{2}\right| \geqslant 2$, such that

- $A_{1} \subseteq C_{1}$, and $A_{2} \subseteq C_{2}$,
- for every partition of A_{1} or A_{2} into two nonempty subsets, there is a square included in $A_{1} \cup A_{2}$ that has nonempty intersection with both subsets, and
- subject to these conditions $A_{1} \cup A_{2}$ is maximal.

Since $\left(A_{1}, A_{2}\right)$ is not a W -join (by hypothesis), we may assume (by the symmetry between C_{1}, C_{2}) that there exists $z \in V(G) \backslash\left(A_{1} \cup A_{2}\right)$ with a neighbour and an antineighbour in C_{1}. Hence $z \neq t_{1}, t_{2}, t_{3}$. Since $\left|A_{1}\right|>1$, we may choose a square $\{a, b, c, d\}$ such that z is adjacent to a and antiadjacent to b. Since z has an antineighbour in C_{1} it follows that $z \notin C_{1}$; and since $c \in N_{2}(a) \cap M_{2}(b)$, (1) implies that $z \notin N_{3}(a) \cap M_{3}(b)$. Consequently $z \in C_{2}$, and so $\{a, b, z, d\}$ is a square; but then we can add z to A_{2}, contrary to the maximality of $A_{1} \cup A_{2}$. This proves that there is no square.

Now to complete the proof of (2), suppose that $u, v \in C_{1}$ are distinct, and $x \in N_{2}(u) \cap M_{2}(v)$ and $y \in N_{2}(v) \cap M_{2}(u)$. Since $\{u, v, x, y\}$ is not a square (because there are no squares), it follows that $x=y$. Thus $x \in N_{2}(u) \cap M_{2}(u)$, so x is semiadjacent to u, and similarly x is semiadjacent to v, which is impossible. This proves (2).

For $i=1,2,3$, if $u, v \in C_{i}$ we write $u \rightarrow v$ if either $M_{i+1}(u) \cap N_{i+1}(v) \neq \emptyset$, or $N_{i-1}(u) \cap$ $M_{i-1}(v) \neq \emptyset$.
(3) If $u, v \in C_{i}$ then not both $u \rightarrow v$ and $v \rightarrow u$. Moreover, if $u, v, w \in C_{i}$, and $u \rightarrow v$ and $v \rightarrow w$, then $u \rightarrow w$.

For suppose that $u \rightarrow v$. We may assume that $i=1$, and since $u \rightarrow v$ we may assume from the symmetry between C_{2}, C_{3} that $M_{2}(u) \cap N_{2}(v) \neq \emptyset$. By (1) $M_{3}(u) \cap N_{3}(v)=\emptyset$, and by (2) $M_{2}(v) \cap$ $N_{2}(u)=\emptyset$. Consequently $v \nrightarrow u$. This proves the first claim.

For the second, suppose that $u, v, w \in C_{1}$ and $u \rightarrow v$ and $v \rightarrow w$. From the symmetry we may assume that there exists $x \in M_{2}(u) \cap N_{2}(v)$. Since $w \nrightarrow v$ it follows that $x \notin M_{2}(w) \cap N_{2}(v)$, and so x, w are adjacent. Hence $x \in M_{2}(u) \cap N_{2}(w)$ and so $u \rightarrow w$ as required. This proves (3).

From (3) there is a linear order (say u_{1}, \ldots, u_{a}) of the members of C_{1} such that for $1 \leqslant i<j \leqslant a$, every vertex in C_{3} adjacent to u_{j} is strongly adjacent to u_{i}, and every vertex in C_{2} adjacent to u_{i} is strongly adjacent to u_{j}. Choose orders v_{1}, \ldots, v_{b} of C_{2} and w_{1}, \ldots, w_{c} of C_{3} similarly. Then if we place the vertices of G in a circle, in the order

$$
t_{2}, u_{1}, \ldots, u_{a}, t_{3}, v_{1}, \ldots, v_{b}, t_{1}, w_{1}, \ldots, w_{c},\left(t_{2}\right)
$$

this gives a representation of G as a circular interval trigraph. This proves 3.1.

4. Antiprismatic trigraphs

If G is a trigraph, we say $X \subseteq V(G)$ is a fang if $|X|=4$ and at most one pair of vertices in X are strongly adjacent. We say G is antiprismatic if no subset of $V(G)$ is a fang or claw. Next we study which antiprismatic trigraphs are quasi-line. Trigraphs with no triad are antiprismatic, and our next results extend 2.1. In [2,3] we gave a structure theorem describing all antiprismatic trigraphs; but it turns out that so few antiprismatic trigraphs are quasi-line that it is easier not to use that structure theorem, and to prove what we need here from first principles.

Let H be a trigraph with seven vertices v_{1}, \ldots, v_{7} and the following adjacencies:

- the pairs $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}, v_{1} v_{6}, v_{1} v_{7}, v_{3} v_{7}, v_{4} v_{7}, v_{6} v_{7}$ are strongly adjacent,
- v_{1}, v_{3} are semiadjacent, and the adjacency between v_{4}, v_{6} is unspecified, and
- all other pairs are strongly antiadjacent.

We call such a trigraph H a trigraph of H_{7}-type. Such trigraphs are antiprismatic quasi-line trigraphs, but not line trigraphs (because of the semiadjacent pair v_{1}, v_{3}), and not circular interval trigraphs; and they will be exceptional in some of the theorems that follow.

We will prove the following:
4.1. Let G be a slim antiprismatic quasi-line trigraph. Then either G is a line trigraph of a subgraph of K_{6}, or G is a trigraph of H_{7}-type, or G is a circular interval trigraph.

The proof needs several lemmas. We begin with the following, the proof of which is clear:
4.2. If G is antiprismatic and T is a triad of G and $v \in V(G) \backslash T$ then v is strongly adjacent to two members of T and strongly antiadjacent to the third.
4.3. Let H be a graph with six vertices h_{1}, \ldots, h_{6} and eight edges, such that (reading subscripts modulo 6) h_{i}, h_{i+1} are adjacent for $1 \leqslant i \leqslant 6$, and for some i, h_{i}, h_{i+3} are adjacent, and one of h_{i+1}, h_{i+2} is adjacent to one of h_{i+4}, h_{i+5}. Let G be an antiprismatic quasi-line trigraph, not admitting twins, and containing a line trigraph of H as an induced subtrigraph. Then G is a line trigraph of a subgraph of K_{6}.

Proof. For each adjacent pair h_{i}, h_{j} of vertices of H with $i<j$, let $f_{i j}$ be the edge of H joining h_{i}, h_{j}. Thus H has eight edges, including $f_{12}, f_{23}, f_{34}, f_{45}, f_{56}, f_{16}$ and two others that we do not specify yet in order to preserve the symmetry. Moreover, $E(H) \subseteq V(G)$, and for all $e, f \in E(H)$,

- if e, f have a common end in H then they are adjacent in G, and if they have a common end of degree at least three in H, then they are strongly adjacent in G,
- if e, f have no common end in H then they are strongly antiadjacent in G.

Let C be the cycle of H formed by the vertices $h_{1}-h_{2}-\cdots-h_{6}-h_{1}$ in order. For each pair $i, j \in$ $\{1, \ldots, 6\}$ with $i<j$, we say that a vertex $v \in V(G) \backslash E(C)$ is of $i j$-type if v is strongly adjacent to each edge f of C that is incident with h_{i} or h_{j}, and strongly antiadjacent to every other edge of C.
(1) For every vertex $v \in V(G) \backslash E(C)$, there exist distinct i, j such that v is of $i j$-type and h_{i}, h_{j} are not adjacent in C .

For by 4.2 it follows that v is strongly adjacent to two of f_{12}, f_{34}, f_{56}, and strongly antiadjacent to the third. We may therefore assume that v is strongly adjacent to f_{12}, f_{34} and strongly antiadjacent to f_{56}. Similarly v is strongly adjacent to two of f_{23}, f_{45}, f_{16} and strongly antiadjacent to the third. If v is adjacent to f_{23}, f_{45} then v is of type 24; if it is adjacent to f_{45}, f_{16} then it is of type 14; and if it is adjacent to f_{16}, f_{23} then it is of type 13. This proves (1).
(2) If $v, v^{\prime} \in V(G) \backslash E(C)$, with types $i j$ and 14 respectively, then

- if $\{i, j\} \cap\{1,4\} \neq \emptyset$, then v, v^{\prime} are strongly adjacent, and
- if $\{i, j\} \cap\{1,4\}=\emptyset$, then v, v^{\prime} are strongly antiadjacent.

For from the symmetry we may assume that (i, j) is one of $(1,3),(1,4),(2,5),(2,6)$. In the first two cases it follows that v, v^{\prime} are strongly adjacent since otherwise $\left\{f_{16}, v, v^{\prime}, f_{56}\right\}$ is a claw. In the last two cases it follows that v, v^{\prime} are strongly antiadjacent since otherwise $\left\{v^{\prime}, v, f_{23}, f_{56}\right\}$ is a claw. This proves (2).
(3) If $v, v^{\prime} \in V(G) \backslash E(C)$, with types $i j$ and $i^{\prime} j^{\prime}$ respectively, and $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, then v, v^{\prime} are strongly adjacent.

For by (2) we may assume that $\left(i^{\prime}, j^{\prime}\right)=(1,3)$ and (i, j) is one of $(1,3),(1,5)$. If $(i, j)=(1,3)$ then v, v^{\prime} are strongly adjacent since otherwise $\left\{f_{16}, v, v^{\prime}, f_{56}\right\}$ is a claw. Suppose then that $(i, j)=(1,5)$ and v, v^{\prime} are antiadjacent. By hypothesis there exists $w \in E(H) \backslash E(C)$ of type 14,25 or 36 . If w is of type 14 , then w is adjacent to both v, v^{\prime} by (2), and so $\left\{v, f_{45}, f_{34}, v^{\prime}, f_{12}, w\right\}$ induces a 5wheel, a contradiction. From the symmetry we may therefore assume that w has type 25 , and hence by (2), w is adjacent to v and antiadjacent to v^{\prime}. But then $\left\{v, w, f_{23}, v^{\prime}, f_{16}, f_{12}\right\}$ induces a 5 -wheel, a contradiction. This proves (3).
(4) If $v, v^{\prime} \in V(G) \backslash E(C)$, with types $i j$ and $i^{\prime} j^{\prime}$ respectively, then

- if $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$, then v, v^{\prime} are strongly adjacent, and
- if $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\emptyset$, then v, v^{\prime} are strongly antiadjacent.

For by (3) we may assume that $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\emptyset$, and by (2) that $\left(i^{\prime}, j^{\prime}\right)=(1,3)$. Suppose that v, v^{\prime} are adjacent. If $\{i, j\}=\{4,6\}$ then $\left\{f_{12}, f_{23}, f_{34}, v, f_{16}, v^{\prime}\right\}$ induces a 5 -wheel, a contradiction; so from (2) and the symmetry we may assume that $(i, j)=(2,4)$. By hypothesis there exists $w \in$ $E(H) \backslash E(C)$ of type 14,25 or 36 . If w is of type 36 , then w is adjacent to v^{\prime} and antiadjacent to v, and $\left\{w, f_{34}, v, f_{12}, f_{16}, v^{\prime}\right\}$ induces a 5 -wheel, a contradiction. Thus w is not of type 36 , and similarly it is not of type 25 ; so w is of type 14 . By hypothesis, there is an edge x of H incident with one of h_{2}, h_{3} and one of h_{5}, h_{6}. From the symmetry we may assume that x is incident with h_{2}. If x is incident with h_{5} then it has type 25 , which we already saw was impossible. Thus x has type 26. By (3) x is adjacent to v, and by (2) it is antiadjacent to w. If x is adjacent to v^{\prime}, then $\left\{x, f_{23}, f_{34}, w, f_{16}, v^{\prime}\right\}$ induces a 5 -wheel, a contradiction; so x is antiadjacent to v^{\prime}. But then $\left\{v, v^{\prime}, x, f_{45}\right\}$ is a claw, a contradiction. This proves (4).
(5) If $v \in V(G) \backslash E(C)$ is of type $i j$, then the two edges of C incident with h_{i} in C are strongly adjacent in G.

For from the symmetry we may assume that $(i, j)=(1,3)$ or $(1,4)$; and then f_{12}, f_{16} are strongly adjacent, since $\left\{v, f_{12}, f_{16}, f_{34}\right\}$ is not a claw. This proves (5).

From (4) it follows that every two members of $V(G) \backslash E(C)$ of the same type are twins; and so all members of $V(G) \backslash E(C)$ are of different types, and therefore (5) implies that G is a line trigraph of a subgraph of K_{6}. This proves 4.3.
4.4. Let G be an antiprismatic quasi-line trigraph. Suppose that there are at least two triads, and for some $z \in V(G)$, every triad contains z. Suppose also that there are no twins both different from z, and there is no W-join (P, Q) with $z \notin P \cup Q$. Then either G is a line trigraph of a subgraph of K_{6}, or G is of H_{7}-type.

Proof. Let N be the set of strong neighbours of z, and M the set of antineighbours. Let $\left\{z, a_{i}, b_{i}\right\}$ $(1 \leqslant i \leqslant n)$ be the triads containing z. By hypothesis, $n \geqslant 2$. Since there is no fang, no two triads have more than one vertex in common, and so $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ are all distinct. By 4.2, $\left\{a_{i}, b_{i}\right\}$ is strongly complete to $M \backslash\left\{a_{i}, b_{i}\right\}$ for $1 \leqslant i \leqslant n$, and z is strongly anticomplete to M.

For all adjacent $u, v \in\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$, let $D(u v)$ be the set of members of N adjacent to both u, v. Since every triad contains z and there is no claw, it follows that every vertex in N is adjacent to exactly one of a_{1}, b_{1}, and to exactly one of a_{2}, b_{2}; and so the four sets $D\left(a_{1} a_{2}\right), D\left(a_{2} b_{1}\right), D\left(b_{1} b_{2}\right)$, $D\left(b_{2} a_{1}\right)$ are pairwise disjoint and have union N. Since every triad contains z, it follows that for each $x \in M$, the set of vertices in N antiadjacent to x is a strong clique. In particular, the four sets

$$
D\left(a_{1} a_{2}\right) \cup D\left(a_{2} b_{1}\right), D\left(a_{2} b_{1}\right) \cup D\left(b_{1} b_{2}\right), D\left(b_{1} b_{2}\right) \cup D\left(b_{2} a_{1}\right), D\left(b_{2} a_{1}\right) \cup D\left(a_{1} a_{2}\right)
$$

are strong cliques. Since $\left(\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\}\right)$ is not a W-join, it follows that $D\left(a_{2} b_{1}\right) \cup D\left(b_{2} a_{1}\right) \neq \emptyset$, and similarly $D\left(a_{1} a_{2}\right) \cup D\left(b_{1} b_{2}\right) \neq \emptyset$; and we may assume from the symmetry that there exists $d_{1} \in$ $D\left(a_{1} a_{2}\right)$ and $d_{2} \in D\left(a_{1} b_{2}\right)$. Thus d_{1}, d_{2} are strongly adjacent.

Let $X=M \backslash\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$. If some vertex $x \in X$ is adjacent to both d_{1}, d_{2}, then $\left\{d_{1}, a_{2}, b_{1}, b_{2}, d_{2}, x\right\}$ induces a 5 -wheel, and if some $x \in X$ is antiadjacent to both d_{1}, d_{2} then $\left\{x, a_{2}, d_{1}, d_{2}, b_{2}, a_{1}\right\}$ induces a 5 -wheel, in either case a contradiction. Thus d_{1}, d_{2} have complementary neighbour sets in X (and all their neighbours in X are strong neighbours). Since this holds for all choices of d_{1}, d_{2}, we deduce that there is a partition X_{1}, X_{2} of X such that $D\left(a_{1}, a_{2}\right)$ is strongly complete to X_{1} and strongly anticomplete to X_{2}, and vice versa for $D\left(a_{1} b_{2}\right)$. By the same argument applied to $D\left(a_{1} b_{2}\right)$ and $D\left(b_{1} b_{2}\right)$ it follows that $D\left(b_{1} b_{2}\right)$ is strongly complete to X_{1} and strongly anticomplete to X_{2}; and by the same argument applied to $D\left(a_{1} a_{2}\right)$ and $D\left(a_{2} b_{1}\right)$ it follows that $D\left(a_{2} b_{1}\right)$ is strongly complete to X_{2} and strongly anticomplete to X_{1}.

We claim that $D\left(a_{1} a_{2}\right)$ is strongly complete to $D\left(b_{1} b_{2}\right)$; for if say $p \in D\left(a_{1} a_{2}\right)$ is antiadjacent to $q \in$ $D\left(b_{1} b_{1}\right)$ then $\left\{z, p, a_{1}, b_{2}, q, d_{2}\right\}$ induces a 5 -wheel, a contradiction. Similarly $D\left(a_{1} b_{2}\right)$ is complete to $D\left(a_{2} b_{1}\right)$. Thus any two vertices in $D\left(a_{1} a_{2}\right)$ are twins, and so $D\left(a_{1} a_{2}\right)=\left\{d_{1}\right\}$, and similarly $D\left(a_{1} b_{2}\right)=$ $\left\{d_{2}\right\}$ and $\left|D\left(b_{1} b_{2}\right)\right|,\left|D\left(a_{2} b_{1}\right)\right| \leqslant 1$. Since $\left(X_{1}, X_{2}\right)$ is not a W-join and there are no twins, it follows that $\left|X_{1}\right|,\left|X_{2}\right| \leqslant 1$; and in particular $n \leqslant 3$ and $|V(G)| \leqslant 11$. Since $\left\{b_{1}, b_{2}, d_{2}, d_{1}, a_{2}, a_{1}\right\}$ does not induce a 5 -wheel it follows that a_{1}, b_{1} are strongly antiadjacent.

Suppose that $D\left(b_{1} b_{2}\right) \neq \emptyset$, and let $D\left(b_{1} b_{2}\right)=\left\{d_{3}\right\}$ say. From the symmetry between d_{1}, d_{3} it follows that a_{2}, b_{2} are strongly antiadjacent. We claim that X_{1} is strongly anticomplete to X_{2}; for if say $x_{1} \in X_{1}$ is adjacent to $x_{2} \in X_{2}$, then $\left\{x_{2}, b_{1}, d_{3}, d_{1}, a_{1}, x_{1}\right\}$ induces a 5 -wheel, a contradiction. But then G is a line trigraph of a subgraph of K_{6} as required.

We may therefore assume that $D\left(b_{1} b_{2}\right)=\emptyset$, and similarly $D\left(a_{2} b_{1}\right)=\emptyset$. Since $\left(X_{1} \cup\left\{a_{2}\right\}, X_{2} \cup\left\{b_{2}\right\}\right)$ is not a W -join it follows that $X=\emptyset$. If a_{2}, b_{2} are strongly antiadjacent then G is a line trigraph of a subgraph of K_{6}, and if a_{2}, b_{2} are semiadjacent then G is of H_{7}-type. This proves 4.4.

In view of 2.1 and 3.1, the next result immediately implies 4.1, the main result of this section.
4.5. Let G be a slim antiprismatic quasi-line trigraph, such that two triads in G have nonempty intersection. Then either G is a line trigraph of a subgraph of K_{6}, or G is of H_{7}-type.

Proof. Let $z \in V(G)$ belong to at least two triads, and let $\left\{z, a_{i}, b_{i}\right\}(i=1,2)$ be two such triads. Thus $a_{1}, b_{1}, a_{2}, b_{2}$ are distinct, and by $4.2,\left\{a_{1}, b_{1}\right\}$ is strongly complete to $\left\{a_{2}, b_{2}\right\}$, and z is strongly anticomplete to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$.
(1) If some triad is disjoint from $\left\{z, a_{1}, a_{2}, b_{1}, b_{2}\right\}$ then G is a line trigraph of a subgraph of K_{6}.

For suppose that $\{a, b, c\}$ is a triad disjoint from $\left\{z, a_{1}, a_{2}, b_{1}, b_{2}\right\}$. By 4.2 applied to $\{a, b, c\}$ and z, it follows that z is strongly adjacent to two of a, b, c, say a, b, and strongly antiadjacent to c. For $i=1,2$, by 4.2 applied to $\left\{z, a_{i}, b_{i}\right\}$ and c, it follows that c is strongly adjacent to a_{i}, b_{i}; and by 4.2 applied to $\left\{z, a_{i}, b_{i}\right\}$ and a we deduce that a is strongly adjacent to one of a_{i}, b_{i} and strongly antiadjacent to the other, say a is strongly adjacent to a_{i} and strongly antiadjacent to b_{i}. For $i=1,2$, since $\left\{a_{i}, a, b, c\right\}$ is not a claw it follows that a_{i}, b are strongly antiadjacent; and so by 4.2 applied to $\left\{z, a_{i}, b_{i}\right\}$ and b it follows that b is strongly adjacent to b_{i}.

Since ($\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\}$) is not a W-join, we may assume that some vertex x say is adjacent to a_{1} and antiadjacent to a_{2}. Thus $x \notin\left\{z, a_{1}, a_{2}, b_{1}, b_{2}, a, b\right\}$. By 4.2 applied to $\left\{z, a_{2}, b_{2}\right\}$ and x it follows that x is strongly adjacent to z, b_{2}, and strongly antiadjacent to a_{2}; and by 4.2 applied to $\left\{z, a_{1}, b_{1}\right\}$ and x, we deduce that x is strongly adjacent to a_{1} and strongly antiadjacent to b_{1}. Now x is strongly adjacent to two of a, b, c and strongly antiadjacent to the third. If x is antiadjacent to c, then $\left\{x, b_{2}, c, a_{2}, a, a_{1}\right\}$ induces a 5 -wheel, a contradiction; so from the symmetry we may assume that x is strongly antiadjacent to a say, and strongly adjacent to b, c. Thus $\left\{x, a, b_{1}\right\}$ is a triad, and so the pairs $a_{1} b_{1}, a b, a c$ are strongly antiadjacent, by 4.2 . If b, c are adjacent then $\left\{a_{1}, a_{2}, b_{1}, b, x, c\right\}$ induces a 5 -wheel, and if a_{2}, b_{2} are adjacent then $\left\{a_{1}, a_{2}, b_{1}, b, x, b_{2}\right\}$ induces a 5 -wheel, in either case a contradiction; so $b c, a_{2} b_{2}$ are both strongly antiadjacent. But then the subtrigraph induced on $\left\{a, z, x, b_{2}, b_{1}, a_{2}, a_{1}, b\right\}$ satisfies the hypotheses of 4.3 and so G is a line trigraph of a subgraph of K_{6}. This proves (1).

By 4.4, we may assume that there is a triad T not containing z, and by (1) we may assume that $b_{2} \in T$ say. Thus z is strongly adjacent to the other two members of T, and in particular $a_{1}, a_{2}, b_{1} \notin T$. Let $T=\left\{b_{2}, a_{3}, b_{3}\right\}$ say. By 4.2 we may assume that the pairs $a_{1} a_{3}, b_{1} b_{3}$ are strongly adjacent, and $a_{1} b_{3}, a_{3} b_{1}$ are strongly antiadjacent. Also, a_{2} is strongly adjacent to a_{3}, b_{3}, and by three applications of 4.2 it follows that the pairs $b_{2} a_{3}, b_{2} b_{3}, a_{2} b_{2}$ are strongly antiadjacent. Hence all pairs of vertices within $\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, z\right\}$ are either strongly adjacent or strongly antiadjacent, except possibly for the pairs $a_{1} b_{1}$ and $a_{3} b_{3}$, each of which is either semiadjacent or strongly antiadjacent. Let $W=$ $\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, z\right\}$, and let $M=V(G) \backslash W$. Because W is a union of triads, 4.2 implies that no vertex in M is semiadjacent to a member of W.
(2) If some vertex is adjacent to both of z, b_{2}, then G is a line trigraph of a subgraph of K_{6}.

For suppose that some x is adjacent to both z, b_{2}. Consequently $x \in M$, and so x is not semiadjacent to any member of W. By 4.2, x is antiadjacent to a_{2}. Suppose that x is adjacent to both b_{1}, a_{3} (and hence antiadjacent to a_{1}, b_{3}, by two applications of 4.2 . From two applications of 4.2 to $\left\{x, a_{1}, b_{3}\right\}$ we deduce that $a_{1} b_{1}$ and $a_{3} b_{3}$ are both strongly antiadjacent pairs; but then the subtrigraph induced on $W \cup\{x\}$ satisfies the hypotheses of 4.3 and so G is a line trigraph of a subgraph of K_{6}. Thus we may assume that x is antiadjacent to at least one of b_{1}, a_{3}, and to at least one of a_{1}, b_{3} (by the symmetry taking $\left(a_{1}, a_{3}\right)$ to $\left(b_{1}, b_{3}\right)$ and fixing each of $\left.a_{2}, b_{2}, x, z\right)$. Since x is antiadjacent to exactly one of a_{1}, b_{1} and exactly one of a_{3}, b_{3}, we may assume (from the same symmetry) that x is antiadjacent to a_{1}, a_{3} and adjacent to b_{1}, b_{3}. But then the subtrigraph induced on $W \cup\{x\}$ satisfies the hypotheses of 4.3 and therefore G is a line trigraph of a subgraph of K_{6}. This proves (2).

For all $w \in W$, let $M(w)$ be the set of all vertices in M that are antiadjacent (and therefore strongly antiadjacent) to w. Because of the triad $\left\{z, a_{2}, b_{2}\right\}$, every vertex different from z, a_{2}, b_{2} is antiadjacent to exactly one of z, a_{2}, b_{2}. By (2), we may therefore assume that $M\left(a_{2}\right)=\emptyset$, and $M\left(b_{2}\right), M(z)$ are disjoint and have union M. Every vertex in $M \backslash M(z)$ is antiadjacent to exactly one of a_{1}, b_{1}, and every vertex in $M(z)$ is adjacent to both a_{1}, b_{1}; so $M\left(a_{1}\right), M\left(b_{1}\right)$ are disjoint and have union $M\left(b_{2}\right)$, and similarly $M\left(a_{3}\right), M\left(b_{3}\right)$ are disjoint and have union $M(z)$. Thus in summary, M is the union of the four disjoint sets $M\left(a_{1}\right), M\left(b_{1}\right), M\left(a_{3}\right), M\left(b_{3}\right)$; the first two have union $M\left(b_{2}\right)$ and the last two have union $M(z)$. If $M\left(b_{2}\right)$ is not a strong clique, then there is a triad T included in $M\left(b_{2}\right) \cup\left\{b_{2}\right\}$ containing b_{2}, and the triad $\left\{z, a_{1}, b_{1}\right\}$ is disjoint from both T and the triad $\left\{z, a_{2}, b_{2}\right\}$; so there are three triads, exactly one pair of which have nonempty intersection, and the theorem holds by (1). We may therefore assume that $M\left(b_{2}\right)$ is a strong clique, and in particular $M\left(a_{1}\right)$ is strongly complete to $M\left(b_{1}\right)$. Similarly we may assume that $M\left(a_{3}\right)$ is strongly complete to $M\left(b_{3}\right)$. If $p \in M\left(a_{3}\right)$ is adjacent to $q \in M\left(b_{1}\right)$ then $\left\{p, a_{1}, a_{3}, z, b_{3}, q\right\}$ induces a 5-wheel, a contradiction; so $M\left(a_{3}\right), M\left(b_{1}\right)$ are strongly anticomplete, and similarly $M\left(a_{1}\right), M\left(b_{3}\right)$ are strongly anticomplete. If some $p \in M\left(a_{3}\right)$ is antiadjacent to some $q \in M\left(a_{1}\right)$, then $\left\{p, b_{1}, q, a_{3}, a_{1}, a_{2}\right\}$ induces a 5 -wheel, a contradiction; so $M\left(a_{3}\right)$ is strongly complete to $M\left(a_{1}\right)$ and similarly $M\left(b_{3}\right)$ is strongly complete to $M\left(b_{1}\right)$. Since $\left(M\left(a_{1}\right) \cup\left\{b_{3}\right\}, M\left(b_{1}\right) \cup\right.$ $\left\{a_{3}\right\}$) is not a W -join and G does not admit twins, it follows that $M\left(a_{1}\right)=M\left(b_{1}\right)=\emptyset$, and similarly $M\left(a_{3}\right)=M\left(b_{3}\right)=\emptyset$. If the pairs $a_{1} b_{1}$ and $a_{3} b_{3}$ are both strongly antiadjacent, then G is a line trigraph of a subgraph of K_{6}, and otherwise G is of H_{7}-type. This proves 4.5 , and hence completes the proof of 4.1.

5. Spots and stripes

Up to now we have been studying antiprismatic quasi-line trigraphs. This was a digression, and somewhat out of order, since the antiprismatic case is just one of several; but the material was selfcontained and we thought it best to treat it separately. Now we return to the main thrust of the paper, proving 1.1. Much of 1.1 follows from two theorems of [5], as we will explain, but first, some more definitions.

Suppose that V_{1}, V_{2} is a partition of $V(G)$ such that V_{1}, V_{2} are nonempty and V_{1} is strongly anticomplete to V_{2}. We call the pair $\left(V_{1}, V_{2}\right)$ a 0 -join in G. Thus, G admits a 0 -join if and only if it is not connected.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- $A_{i}, V_{i} \backslash A_{i} \neq \emptyset$ for $i=1,2$;
- $A_{1} \cup A_{2}$ is a strong clique; and
- $V_{1} \backslash A_{1}$ is strongly anticomplete to V_{2}, and V_{1} is strongly anticomplete to $V_{2} \backslash A_{2}$.

In these circumstances, we say that $\left(V_{1}, V_{2}\right)$ is a 1-join. If we replace the first condition above by

- V_{1}, V_{2} are not strongly stable,
we call $\left(V_{1}, V_{2}\right)$ a pseudo-1-join. If G is connected then every 1 -join is a pseudo-1-join.
Next, suppose that V_{0}, V_{1}, V_{2} is a partition of $V(G)$ (where V_{0} may be empty), and for $i=1,2$ there are disjoint subsets C_{i}, D_{i} of V_{i} satisfying the following:
- for $i=1,2, C_{i}, D_{i}$ and $V_{i} \backslash\left(C_{i} \cup D_{i}\right)$ are all nonempty;
- $V_{0} \cup C_{1} \cup C_{2}$ and $V_{0} \cup D_{1} \cup D_{2}$ are strong cliques; and V_{0} is strongly anticomplete to $V_{i} \backslash\left(C_{i} \cup D_{i}\right)$ for $i=1,2$; and
- for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, either v_{1} is strongly antiadjacent to v_{2}, or $v_{1} \in C_{1}$ and $v_{2} \in C_{2}$, or $v_{1} \in D_{1}$ and $v_{2} \in D_{2}$.

We call the triple (V_{0}, V_{1}, V_{2}) a generalized 2 -join, and if $V_{0}=\emptyset$ we call the pair $\left(V_{1}, V_{2}\right)$ a 2 -join. If we replace the first condition above by

- V_{1}, V_{2} are not strongly stable,
we call (V_{0}, V_{1}, V_{2}) a pseudo-2-join.
Finally, suppose that $V_{1}, V_{2}, V_{3}, V_{4}$ is a partition of $V(G)$, satisfying the following:
- $V_{1} \neq \emptyset$, and $V_{1} \cup V_{2}, V_{1} \cup V_{3}$ are strong cliques, and V_{1} is strongly anticomplete to V_{4};
- either $\left|V_{1}\right| \geqslant 2$, or $V_{2} \cup V_{3}$ is not a strong clique;
- $V_{2} \cup V_{3} \cup V_{4}$ is not strongly stable; and
- if $v_{2} \in V_{2}$ and $v_{3} \in V_{3}$ are adjacent then they have the same neighbours in V_{4} and neither of them is semiadjacent to any member of V_{4}.

In these circumstances we call $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ a biclique.
A vertex v of a trigraph is simplicial if $N \cup\{v\}$ is a strong clique, where N is the set of all neighbours of v. Let us say that (G, Z) is a stripe if G is a trigraph, and $Z \subseteq V(G)$ is a set of simplicial vertices, such that Z is strongly stable and no vertex has two neighbours in Z. (In [5], we also included the condition that G is claw-free, but let us omit that now.) We call the members of Z the ends of the stripe.

A stripe (J, Z) is said to be unbreakable if

- J does not admit a 0 -join, a pseudo-1-join, a pseudo-2-join or a biclique,
- there are no twins $u, v \in V(J) \backslash Z$,
- there is no W-join (A, B) in J such that $Z \cap A, Z \cap B=\emptyset$, and
- Z is the set of all vertices that are simplicial in J.

In view of Theorem 9.1 of [5], in order to prove 1.1 it suffices to show the following:
5.1. For every unbreakable stripe (J, Z), if J is quasi-line then either

- $|Z|=2$ and (J, Z) is a linear interval stripe, or
- $|Z|=1$ and (J, Z) is a bubble, or
- $Z=\emptyset$ and J is a circular interval trigraph.

We prove this in the following sections. We will eventually need a number of further definitions, and it is convenient to insert them at this point. There are eight classes of trigraphs described in [5], called $\mathcal{S}_{0}, \ldots, \mathcal{S}_{7}$. To reduce the amount of material we have to copy over from [5], we leave the reader to check that
5.2. For $i=1,2,4$, if $G \in \mathcal{S}_{i}$, then G contains a 5 -wheel, and therefore is not quasi-line.

Here are the definitions of the classes \mathcal{S}_{i} for $i=0,3,5,6,7$:
\mathcal{S}_{0} : This is the class of line trigraphs of graphs.
\mathcal{S}_{3} : This is the class of long circular interval trigraphs.
\mathcal{S}_{5} : Let $n \geqslant 2$. Construct a trigraph H as follows. Its vertex set is the disjoint union of four sets A, B, C and $\left\{d_{1}, \ldots, d_{5}\right\}$, where $|A|=|B|=|C|=n$, say $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, \ldots, c_{n}\right\}$. Let $X \subseteq A \cup B \cup C$ with $|X \cap A|,|X \cap B|,|X \cap C| \leqslant 1$. Adjacency is as follows: A, B, C are strong cliques; for $1 \leqslant i, j \leqslant n, a_{i}, b_{j}$ are adjacent if and only if $i=j$, and c_{j} is strongly adjacent to a_{j} if and only if $i \neq j$, and c_{i} is strongly adjacent to b_{j} if and only if $i \neq j$. Moreover

- a_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $b_{i} \in X$,
- b_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $a_{i} \in X$,
- a_{i} is semiadjacent to b_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $c_{i} \in X$,
- no two of $A \backslash X, B \backslash X, C \backslash X$ are strongly complete to each other.

Also, d_{1} is strongly $A \cup B \cup C$-complete; d_{2} is strongly complete to $A \cup B$, and either semiadjacent or strongly adjacent to $d_{1} ; d_{3}$ is strongly complete to $A \cup\left\{d_{2}\right\} ; d_{4}$ is strongly complete to $B \cup\left\{d_{2}, d_{3}\right\} ; d_{5}$ is strongly adjacent to d_{3}, d_{4}; and all other pairs are strongly antiadjacent. Let the trigraph just constructed be H, and let $G=H \mid(V(H) \backslash X)$. Then \mathcal{S}_{5} is the class of all such trigraphs G.
\mathcal{S}_{6} : Let $n \geqslant 2$. Construct a trigraph J as follows. Its vertex set is the disjoint union of three sets $A^{\prime}, B^{\prime}, C^{\prime}$, where $\left|A^{\prime}\right|=\left|B^{\prime}\right|=n+1$ and $\left|C^{\prime}\right|=n$, say $A^{\prime}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}, B^{\prime}=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ and $C^{\prime}=\left\{c_{1}, \ldots, c_{n}\right\}$. Adjacency is as follows. $A^{\prime}, B^{\prime}, C^{\prime}$ are strong cliques. For $0 \leqslant i, j \leqslant n$ with $(i, j) \neq(0,0)$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and for $1 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$ let c_{i}, a_{j} be antiadjacent if and only if $i=j$, and let c_{i}, b_{j} be antiadjacent if and only if $i=j$. (There was an error in the definition of \mathcal{S}_{6} given in [4,5], corrected here.) a_{0}, b_{0} may be semiadjacent or strongly antiadjacent. All other pairs not specified so far are strongly antiadjacent. Now let $X \subseteq A^{\prime} \cup B^{\prime} \cup C^{\prime} \backslash\left\{a_{0}, b_{0}\right\}$ with $\left|C^{\prime} \backslash X\right| \geqslant 2$. Let all adjacent pairs be strongly adjacent except:

- a_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $b_{i} \in X$,
- b_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $a_{i} \in X$,
- a_{i} is semiadjacent to b_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $c_{i} \in X$.

Let $G=J \backslash X$. We say that G is near-antiprismatic. Let \mathcal{S}_{6} be the class of all near-antiprismatic trigraphs.
\mathcal{S}_{7} : This is the class of all antiprismatic trigraphs.
For quasi-line trigraphs, we can also eliminate \mathcal{S}_{5}, because of the following.
5.3. If $G \in \mathcal{S}_{5}$, then G contains a 5-wheel, and therefore is not quasi-line.

Proof. Let $A, B, C, d_{1}, \ldots, d_{5}, n, X$ etc. be as in the definition of \mathcal{S}_{5}. Let $1 \leqslant i, j \leqslant n$ with $i \neq j$. If $a_{i}, b_{j} \notin X$, then the subtrigraph induced on $\left\{d_{3}, a_{i}, d_{1}, b_{j}, d_{4}, d_{2}\right\}$ is a 5 -wheel, a contradiction. Thus X contains one of a_{i}, b_{j}, and similarly one of a_{j}, b_{i}. Since this holds for all i, j, and since $n \geqslant 2$ and $|X \cap A|,|X \cap B| \leqslant 1$, it follows that $n=2$, and we may assume that $a_{2}, b_{2} \in X$. Since $A \backslash X, B \backslash X$ are not strongly complete to each other, it follows that a_{1} is semiadjacent to b_{1}, and so $c_{1} \in X$; but then $A \backslash X$ is strongly complete to $C \backslash X$, a contradiction. This proves 5.3.

6. Two-ended stripes

There are fifteen types of stripes described in [5], called $\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{15}$ (and those we need are defined below). The following is a consequence of the results of [5].
6.1. Let (J, Z) be an unbreakable claw-free stripe with $|Z| \geqslant 1$. Then $(J, Z) \in \mathcal{Z}_{1} \cup \cdots \cup \mathcal{Z}_{15}$ (and in particular $|Z| \leqslant 2)$.

Proof. If $V(J)$ is the union of two strong cliques then Theorem 10.2 of [5] implies that $(J, Z) \in$ $\mathcal{Z}_{1} \cup \cdots \cup \mathcal{Z}_{15}$ as required, so we assume not. By Theorem 10.5 of [5], either J is a thickening of an "indecomposable" member of \mathcal{S}_{i} for some $i \in\{1, \ldots, 7\}$, or J admits a "hex-join". (The meanings of the two terms in quotes are not needed at this point.) In the first case the claim follows from Theorem 12.2 of [5]. In the second case Theorem 13.1 of [5] implies that $|Z| \leqslant 2$, and the claim follows from Theorems 13.2 and 13.3 of [5]. This proves 6.1.

We leave the reader to verify the next result, which is easy.
6.2. For $i=4,5,7$, if $(J, Z) \in \mathcal{Z}_{i}$ then J contains a 5 -wheel, and therefore is not quasi-line.

The main result of this section is the following, which is the first part of 5.1.
6.3. Every unbreakable quasi-line stripe with at least two ends is a linear interval stripe.

Proof. Let (G, Z) be an unbreakable quasi-line stripe with $|Z| \geqslant 2$. By 6.1 it follows that that $(G, Z) \in \mathcal{Z}_{i}$ for some $i \in\{1, \ldots, 15\}$, and therefore $1 \leqslant i \leqslant 5$, since the other classes contain only stripes with one simplicial vertex. By 6.2 it follows that $1 \leqslant i \leqslant 3$. Here are the definitions of these three classes:
\mathcal{Z}_{1} : This is the class of linear interval stripes.
\mathcal{Z}_{2} : Let $G \in \mathcal{S}_{6}$, let a_{0}, b_{0} etc. be as in the definition of \mathcal{S}_{6}, with a_{0}, b_{0} strongly antiadjacent, and let $Z=\left\{a_{0}, b_{0}\right\}$. Then \mathcal{Z}_{2} is the class of all such (G, Z).
\mathcal{Z}_{3} : Let H be a graph, and let $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}$ be the vertices of a path of H in order, such that h_{1}, h_{5} both have degree one in H, and every edge of H is incident with one of h_{2}, h_{3}, h_{4}. Let G be obtained from a line trigraph of H by making the edges $h_{2} h_{3}$ and $h_{3} h_{4}$ of H (vertices of G) either semiadjacent or strongly antiadjacent to each other in G. Let $Z=\left\{h_{1} h_{2}, h_{4} h_{5}\right\}$. Then \mathcal{Z}_{3} is the class of all such (G, Z).

Consequently we may assume that $(G, Z) \in \mathcal{Z}_{2} \cup \mathcal{Z}_{3}$. Suppose first that $(G, Z) \in \mathcal{Z}_{2}$, and let a_{0}, b_{0}, n, X etc. be as in the definition of \mathcal{S}_{6}, with a_{0}, b_{0} strongly antiadjacent, where $Z=\left\{a_{0}, b_{0}\right\}$. We may assume that for $1 \leqslant i \leqslant n$, at most two of $a_{i}, b_{i}, c_{i} \in X$.

Suppose that $|X \cap A| \geqslant 2$, and $a_{1}, a_{2} \in X$ say. If X also contains b_{1}, b_{2}, then it contains neither of c_{1}, c_{2}, and they are twins, a contradiction since (G, Z) is unbreakable. Thus one of b_{1}, b_{2} is not in X, and similarly one of c_{1}, c_{2} is not in X. Since for $i=1,2$ one of b_{i}, c_{i} is not in X, we may assume that $b_{1}, c_{2} \notin X$. Since ($\left\{b_{1}, b_{2}\right\} \backslash X,\left\{c_{1}, c_{2}\right\} \backslash X$) is not a W-join (because (G, Z) is unbreakable), it follows that $b_{2}, c_{1} \in X$. Since a_{0} has a neighbour it follows that $n \geqslant 3$. Suppose that $n=3$. Then $a_{3} \notin X$, and $c_{3} \notin X$ (because $|C \backslash X| \geqslant 2$ from the definition of \mathcal{S}_{6}), and since ($\left\{a_{3}\right\},\left\{c_{2}, c_{3}\right\}$) is not a W-join it follows that $b_{3} \notin X$, and so c_{3}, a_{3} are strongly antiadjacent. But then c_{3} is simplicial in G, contradicting that (G, Z) is unbreakable. Thus $n \geqslant 4$. If $a_{3} \notin X$, then by the same argument with a_{2}, a_{3} exchanged, it follows that X contains exactly one of c_{1}, c_{3}, and similarly exactly one of c_{2}, c_{3}, which is impossible. Thus $a_{3} \notin X$, and similarly $a_{3}, \ldots, a_{n} \notin X$. Since $a_{3}, a_{4} \notin X$, the same argument (with A, B exchanged) implies that one of $b_{3}, b_{4} \notin X$, say $b_{3} \notin X$. If also $c_{3} \notin X$, then the subtrigraph induced on $\left\{a_{3}, a_{4}, c_{3}, b_{1}, b_{3}, c_{2}\right\}$ induces a 5 -wheel, a contradiction; so $c_{3} \in X$. But then ($\left\{b_{1}, b_{3}\right\},\left\{a_{3}\right\}$) is a W-join, a contradiction. Thus $|X \cap A| \leqslant 1$, and similarly $|X \cap B| \leqslant 1$.

Now suppose that $|X \cap C| \geqslant 2$, say $c_{1}, c_{2} \in X$. Not both $a_{1}, a_{2} \in X$, and not both b_{1}, b_{2}, and yet $\left(\left\{a_{1}, a_{2}\right\} \backslash X,\left\{b_{1}, b_{2}\right\} \backslash X\right)$ is not a W-join; so X contains exactly one of a_{1}, a_{2}, and exactly one of b_{1}, b_{2}. Since it contains at most one of a_{i}, b_{i} for $i=1,2$, we may assume that $a_{1}, b_{2} \notin X$, and $a_{2}, b_{1} \in X$. Since $|C \backslash X| \geqslant 2$ it follows that $n \geqslant 4$, and we may assume that $c_{3}, c_{4} \notin X$. But also X contains none of $a_{3}, a_{4}, b_{3}, b_{4}$, and $\left\{a_{1}, a_{3}, b_{3}, b_{2}, c_{3}, c_{4}\right\}$ induces a 5 -wheel, a contradiction. Thus $|X \cap C| \leqslant 1$, and so $|X| \leqslant 3$.

Suppose that $n \geqslant 4$. Since $|X| \leqslant 3$, we may assume that $a_{1}, b_{1}, c_{1} \notin X$. Also, since X contains at most one member of each of the three sets $\left\{a_{2}, a_{3}, a_{4}\right\},\left\{b_{2}, b_{3}, b_{4}\right\},\left\{c_{2}, c_{3}, c_{4}\right\}$, and at most two of each of the sets $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i=2,3,4$, we may assume that $a_{2}, b_{3}, c_{4} \notin X$. But then induces $\left\{a_{1}, a_{2}, c_{1}, b_{3}, b_{1}, c_{4}\right\}$ a 5-wheel, a contradiction. Thus $n \leqslant 3$.

Now $n \geqslant 2$ since $|C \backslash X| \geqslant 2$; suppose that $n=2$. Thus $c_{1}, c_{2} \notin X$. Thus $\left\{c_{1}, a_{2}, b_{2}\right\} \backslash X$ and $\left\{c_{2}, a_{1}, b_{1}\right\} \backslash X$ are strong cliques. If also c_{i} is strongly anticomplete to $\left\{a_{i}, b_{i}\right\} \backslash X$ for $i=1$, 2 , then $\left(\emptyset,\left\{c_{1}, c_{2}\right\}, A \cup B \backslash X\right.$) is a pseudo-2-join, a contradiction. Thus we may assume that $a_{1} \notin X$, and c_{1}, a_{1} are semiadjacent, and so $b_{1} \in X$. If $a_{2} \in X$ then (G, Z) is a linear interval stripe (in the order $a_{0}, a_{1}, c_{2}, c_{1}, b_{2}, b_{0}$, so we may assume that $a_{2} \notin X$. Since G is connected and therefore b_{0} has a neighbour, it follows that $b_{2} \notin X$. But then $(B, A \cup C)$ is a 1 -join, a contradiction. Thus $n=3$.

Suppose that X has nonempty intersection with $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i=1,2,3$. Then we may assume that $a_{1}, b_{2}, c_{3} \in X$; but then (G, Z) is a linear interval stripe, with the order

$$
a_{0}, a_{2}, a_{3}, c_{1}, c_{2}, b_{3}, b_{1}, b_{0}
$$

as required. Thus we may assume that $a_{1}, b_{1}, c_{1} \notin X$. Suppose that $a_{3}, c_{3} \notin X$ and a_{3}, c_{3} are semiadjacent, and so $b_{3} \in X$; thus $b_{2} \notin X$, and $\left\{a_{1}, a_{3}, c_{1}, b_{2}, b_{1}, c_{3}\right\}$ induces a 5 -wheel, a contradiction. Next, suppose that a_{3}, b_{3} are not in X and are semiadjacent, and so $c_{3} \in X$, and hence $c_{1}, c_{2} \notin X$; but then $\left\{a_{1}, a_{3}, b_{1}, b_{2}, c_{1}, c_{3}\right\}$ induces is a 5-wheel, a contradiction. Thus no two members of $\left\{a_{i}, b_{i}, c_{i}\right\} \backslash X$ are semiadjacent, for $i=2$, 3 . But then G is a line trigraph, and

$$
\left(\left\{a_{1}\right\},\left\{a_{0}, a_{2}, a_{3}\right\} \backslash X,\left\{b_{1}, c_{2}, c_{3}\right\} \backslash X,\left\{b_{0}, b_{2}, b_{3}, c_{1}\right\} \backslash X\right)
$$

is a biclique, a contradiction.
This completes the argument when $(G, Z) \in \mathcal{Z}_{2}$; now suppose that $(G, Z) \in \mathcal{Z}_{3}$. Let H and $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}$ be as in the definition of \mathcal{Z}_{3}. Suppose that some vertex w of H is adjacent to h_{2}, h_{3}, h_{4}. Since $\left(\left\{h_{2} w, h_{2} h_{3}\right\},\left\{w h_{4}, h_{3} h_{4}\right\}\right)$ is not a W-join of G, there is a vertex $w^{\prime} \neq w, h_{2}, h_{3}, h_{4}$ adjacent to h_{3}; but then the subtrigraph of G induced on $\left\{w h_{2}, w h_{4}, h_{3} h_{4}, w^{\prime} h_{3}, h_{2} h_{3}, w h_{3}\right\}$ is a 5wheel, a contradiction. Thus there is no such vertex w, and so every vertex of H different from h_{1}, \ldots, h_{5} has at most two neighbours in $\left\{h_{2}, h_{3}, h_{4}\right\}$.

If some vertex w is adjacent to h_{2}, h_{4} (and therefore not to h_{3}), then $\left(\left\{w h_{2}, w h_{4}\right\}, E(H) \backslash\right.$ $\left\{w h_{2}, w h_{4}\right\}$) is a pseudo-2-join of G, a contradiction. If there are two vertices w, w^{\prime} of H both adjacent to h_{2}, h_{3}, then $\left(\left\{w h_{2}, w^{\prime} h_{2}\right\},\left\{w h_{3}, w^{\prime} h_{3}\right\}\right)$ is a W -join, a contradiction. Thus at most one vertex of H is adjacent to both h_{2}, h_{3}, and similarly at most one to h_{3}, h_{4}. But then (G, Z) is a linear interval stripe. This proves 6.3.

7. One-ended stripes

Now we prove an analogous theorem for unbreakable quasi-line stripes (J, Z) with $|Z|=1$, for the second part of 5.1. First let us make it easier to identify bubbles.
7.1. Let G be a circular interval trigraph, and let z be a simplicial vertex of G. Then (G, z) is a bubble.

Proof. The result is clear if G is a strong clique, and so we may assume that some vertex is antiadjacent to z. Let Σ and $F_{1}, \ldots, F_{k} \subseteq \Sigma$ be as in the definition of circular interval trigraph. Since some vertex is antiadjacent to z, the union of all the sets F_{i} that contain z is homeomorphic to a closed interval I say. Moreover, since z is simplicial, every two vertices in I are strongly adjacent; and so we may replace all the sets F_{i} that contain z by I. Thus we may assume that z belongs to F_{1} and to none of F_{2}, \ldots, F_{k}. Moreover, since z is simplicial we may assume that no endpoint of F_{1} belongs
to $V(G)$ (by extending F_{1} slightly if it has an endpoint in $V(G)$). But then (G, Z) is a bubble. This proves 7.1.

We must look at several of the classes \mathcal{Z}_{i}, and some of them need "hex-expansion", so we begin by defining this. If A, B, C are strong cliques of a trigraph G, pairwise disjoint and with union $V(G)$, we call (G, A, B, C) a three-cliqued trigraph. One type of three-cliqued trigraph of special interest to us is as follows. Let G be a circular interval trigraph, and let Σ be a circle with $V(G) \subseteq \Sigma$, and $F_{1}, \ldots, F_{k} \subseteq$ Σ, as in the definition of circular interval trigraph. By a line we mean either a subset $X \subseteq V(G)$ with $|X| \leqslant 1$, or a subset of some F_{i} homeomorphic to the closed unit interval, with both endpoints in $V(G)$ and strongly adjacent. Let L_{1}, L_{2}, L_{3} be pairwise disjoint lines with $V(G) \subseteq L_{1} \cup L_{2} \cup L_{3}$; then $\left(G, V(G) \cap L_{1}, V(G) \cap L_{2}, V(G) \cap L_{3}\right)$ is a three-cliqued claw-free trigraph. We call such a three-cliqued trigraph a trisected circular interval trigraph. (Note that there are three-cliqued trigraphs (G, A, B, C) with G a circular interval trigraph, that are not trisected. For instance, let G be the graph with vertex set $\left\{v_{1}, \ldots, v_{5}\right\}$ and edge set

$$
\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{1} v_{4}, v_{4} v_{5}, v_{1} v_{5}\right\}
$$

then G is a circular interval trigraph, but the partition $\left\{\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\} n\left\{v_{5}\right\}\right\}$ into three cliques does not yield a trisection.)

Let $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$ be a three-cliqued trigraph with $V\left(G_{i}\right) \neq \emptyset$, for $i=1,2$. Construct G by taking the disjoint union of G_{1} and G_{2}, and then making

- A_{1} strongly complete to $A_{2} \cup C_{2}$ and strongly anticomplete to B_{2},
- B_{1} strongly complete to $A_{2} \cup B_{2}$ and strongly anticomplete to C_{2},
- C_{1} strongly complete to $B_{2} \cup C_{2}$ and strongly anticomplete to A_{2}.

We say ($G, A_{1} \cup A_{2}, B_{1} \cup B_{2}, C_{1} \cup C_{2}$) is a hex-join of ($G_{1}, A_{1}, B_{1}, C_{1}$) and ($G_{2}, A_{2}, B_{2}, C_{2}$). If G_{1}, G_{2} are claw-free then so is G, but hex-joins do not necessarily preserve being quasi-line.

We will often need the following.
7.2. Let (G, A, B, C) is a hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. Suppose that

- G is quasi-line,
- $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a trisected circular interval trigraph, and G_{1} has a triad, and
- there are no twins of G both in $V\left(G_{2}\right)$, and there is no W-join (P, Q) of G with $P \cup Q \subseteq V\left(G_{2}\right)$.

Then (G, A, B, C) is a trisected circular interval trigraph.
Proof. Let $T \subseteq V\left(G_{1}\right)$ be a triad. Let H be the trigraph induced on $T \cup V\left(G_{2}\right)$. Then T is isolated in H, so by 3.1 it follows that H is a circular interval trigraph. Let $V(H) \subseteq \Sigma$ where Σ is a circle, and $V(H)$ is in the appropriate circular order. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ where $t_{1} \in A_{1}, t_{2} \in B_{1}$ and $t_{3} \in C_{1}$. Let $L_{1} \subseteq \Sigma$ be the closed interval of Σ with endpoints t_{2}, t_{3} not containing t_{1}, and define L_{2}, L_{3} similarly. Since t_{2}, t_{3} are antiadjacent to t_{1}, it follows that every vertex in L_{1} is antiadjacent to t_{1}, and similarly for $i=1,2,3$ every vertex of L_{i} is antiadjacent to t_{i}. Since each vertex of G_{2} is antiadjacent to exactly one of t_{1}, t_{2}, t_{3}, we deduce that $V\left(G_{2}\right) \cap L_{1}=B_{2}$, and $V\left(G_{2}\right) \cap L_{2}=C_{2}$, and $V\left(G_{2}\right) \cap L_{3}=A_{2}$. We deduce that ($G_{2}, A_{2}, B_{2}, C_{2}$) is a trisected circular interval trigraph. Now the hex-join of the two trisected circular interval trigraphs ($G_{1}, A_{1}, B_{1}, C_{1}$) and ($G_{2}, A_{2}, B_{2}, C_{2}$) is a third trisected circular interval trigraph (to see this, arrange the six cliques in a circle in the order $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$, in such a way that for $i=1,2$ the restriction to $A_{i} \cup B_{i} \cup C_{i}$ gives a representation of G_{i} as a circular interval trigraph). This proves 7.2.
7.3. Let $\left(G, A_{1} \cup A_{2}, B_{1} \cup B_{2}, C_{1} \cup C_{2}\right)$ be a hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. If G is quasi-line, then

- if there exist $a, a^{\prime} \in A_{2}, b \in B_{2}, c \in C_{2}$ such that a, b, c are pairwise adjacent, and a^{\prime} is antiadjacent to b, c, then A_{1} is strongly complete to B_{1},
- if there exist $a, a^{\prime} \in A_{2}, b, b^{\prime} \in B_{2}, c \in C_{2}$ such that the pairs $a b, a^{\prime} c$ are adjacent, and the pairs $a c, b c, a^{\prime} b$ are antiadjacent, and b^{\prime} is adjacent to all of a, a^{\prime}, c, then $C_{1}=\emptyset$.

Proof. For the first statement, suppose that $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ are antiadjacent; then $\left\{a_{1}, c, b, b_{1}\right.$, $\left.a^{\prime}, a\right\}$ induces a 5 -wheel. For the second, if $c_{1} \in C_{1}$ then $\left\{a, a^{\prime}, c, c_{1}, b, b^{\prime}\right\}$ induces a 5 -wheel. This proves 7.3.

Let (G, A, B, C) be a three-cliqued trigraph, and let $z \in A$ such that z is strongly anticomplete to $B \cup C$. Let V_{1}, V_{2}, V_{3} be three disjoint sets of new vertices, and let G^{\prime} be the trigraph obtained by adding V_{1}, V_{2}, V_{3} to G with the following adjacencies:

- V_{1} and $V_{2} \cup V_{3}$ are strong cliques,
- V_{1} is strongly complete to $B \cup C$ and strongly anticomplete to A,
- V_{2} is strongly complete to $C \cup A$ and strongly anticomplete to B,
- V_{3} is strongly complete to $A \cup B$ and strongly anticomplete to C.
(The adjacency between V_{1} and $V_{2} \cup V_{3}$ is unspecified.) It follows that z is a simplicial vertex of G^{\prime}. We say that $\left(G^{\prime}, z\right)$ is a hex-expansion of (G, A, B, C). Hex-expansions are thus a special case of hex-joins, and we often need to apply 7.3 to hex-expansions. It is a little tricky to keep track of the symmetry, so for convenience, let us write out some consequences of 7.3 for hex-expansions.
7.4. Let $\left(G^{\prime}, z\right)$ be a hex-expansion of (G, A, B, C), with sets V_{1}, V_{2}, V_{3} as above.
- If there exist $a \in A, b \in B$, and $c, c^{\prime} \in C$, such that a, b, c are pairwise adjacent, and c^{\prime} is antiadjacent to a, b, then V_{1} is strongly complete to V_{2}.
- If there exist $a \in A, b, b^{\prime} \in B$, and $c \in C$ such that a, b, c are pairwise adjacent, and b^{\prime} is antiadjacent to a, c, then V_{1} is strongly complete to V_{3}.
- If there exist $a, a^{\prime} \in A, b \in B, c \in C$, and $d \in B \cup C \backslash\{b, c\}$, such that the pairs ab, $b^{\prime} c$ are adjacent, and the pairs $b c, a c, a b^{\prime}$ are antiadjacent, and d is adjacent to all of a, a^{\prime}, b, c, then $V_{1}=\emptyset$.
- If there exist $a \in A, b, b^{\prime} \in B, c \in C$, and $d \in A \cup C \backslash\{a, c\}$, such that the pairs $b c$, $a b^{\prime}$ are adjacent, and the pairs $a b, a c, b^{\prime} c$ are antiadjacent, and d is adjacent to all of a, b, b^{\prime}, c, then $V_{2}=\emptyset$.
- If there exist $a \in A, b \in B, c, c^{\prime} \in C$, and $d \in A \cup B \backslash\{a, b\}$, such that the pairs ac, bc' are adjacent, and the pairs $b c, a b, a c^{\prime}$ are antiadjacent, and d is adjacent to all of a, b, c, c^{\prime}, then $V_{3}=\emptyset$.

Proof. Since ($G^{\prime}, C \cup V_{1}, A \cup V_{2}, B \cup V_{3}$) is the hex-join of (H, V_{1}, V_{2}, V_{3}) and (G, C, A, B), where $H=G^{\prime} \mid\left(V_{1} \cup V_{2} \cup V_{3}\right)$, the first assertion follows from the first assertion of 7.3, and also the third assertion with $d \in B$ follows from the second assertion of 7.3. There are five other ways to view this as a hex-join; for instance, ($G^{\prime}, C \cup V_{2}, B \cup V_{1}, A \cup V_{3}$) is the hex-join of (H, V_{2}, V_{1}, V_{3}) and (G, C, B, A), and the second statement of 7.3 applied to this yields the fifth assertion of the theorem when $d \in B$. We leave checking the remainder to the reader. This proves 7.4.

The analogue of 6.3 is the following.
7.5. Every unbreakable quasi-line stripe with one end is a bubble.

Proof. Let (G, Z) be an unbreakable quasi-line stripe where $|Z|=1$. Then, by $6.1,(G, Z) \in \mathcal{Z}_{1} \cup$ $\cdots \cup \mathcal{Z}_{15}$, and hence belongs to \mathcal{Z}_{i} for some i with $5 \leqslant i \leqslant 15$ since no 1 -ended stripes belong to \mathcal{Z}_{i} for $1 \leqslant i \leqslant 4$. By $6.2, i \neq 5,7$, and \mathcal{Z}_{6} is the class of bubbles, so we must check \mathcal{Z}_{i} for $i=8,9, \ldots, 15$. Let $Z=\{z\}$ say.
(1) $(G, Z) \notin \mathcal{Z}_{8}$.

This follows from 5.3.
(2) If $(G, Z) \in \mathcal{Z}_{9}$ then (G, Z) is a bubble.

From the definition of \mathcal{Z}_{9}, it follows that G is antiprismatic, with at least one triad, and every triad contains z. Suppose first that there is only one triad. Then this triad is isolated, and by 3.1 it follows that G is a circular interval trigraph; and so 7.1 implies that (G, Z) is a bubble.

Thus we may assume that z belongs to at least two triads. By 4.4, either G is a line trigraph of a subgraph of K_{6}, or G is of H_{7}-type. If G is a line trigraph, then since z is its only simplicial vertex, Theorem 10.3 of [5] implies that (G, Z) is a bubble. If G is of H_{7}-type then G admits a generalized 2 -join, which is impossible. This proves (2).
(3) $(G, Z) \notin \mathcal{Z}_{10}$.

Suppose that $(G, Z) \in \mathcal{Z}_{10}$. From the definition of \mathcal{Z}_{10}, there is a three-cliqued trigraph (H, A, B, C) and a subset $X \subseteq V(H)$ such that (G, Z) is a hex-expansion of ($H \backslash X, A \backslash X, B \backslash X, C$), satisfying the following:

- $V(H)=\left\{z, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, d\right\} ;$
- $A=\left\{z, a_{1}, a_{2}, d\right\}, B=\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}, C=\left\{c_{1}, c_{2}\right\}$ and $\left\{a_{1}, b_{1}, c_{2}\right\}$ are strong cliques;
- a_{2} is strongly adjacent to b_{0} and semiadjacent to $b_{1} ; b_{2}, c_{2}$ are semiadjacent; b_{2}, c_{1} are strongly adjacent; b_{3}, c_{1} are either semiadjacent or strongly adjacent; b_{0}, d are either semiadjacent or strongly adjacent; and all other pairs are strongly antiadjacent;
- $X \subseteq\left\{a_{2}, b_{2}, b_{3}, d\right\}$ such that either $a_{2} \in X$ or $\left\{b_{2}, b_{3}\right\} \subseteq X$.

Let V_{1}, V_{2}, V_{3} be as in the definition of hex-expansion; thus, V_{1} is strongly complete to ($B \cup C$) $\backslash X$, and V_{2} is strongly complete to $(C \cup A) \backslash X$, and V_{3} to $(A \cup B) \backslash X$, and V_{2} is strongly complete to V_{3}. From the first statement of 7.4 applied to $a_{1}, b_{1}, c_{2}, c_{1}$ it follows that V_{1} is strongly complete to V_{2}, and from the same applied to $a_{1}, b_{1}, b_{0}, c_{2}$ it follows that V_{1} is strongly complete to V_{3}. Moreover V_{2} is strongly complete to V_{3}, so $V_{1} \cup V_{2} \cup V_{3}$ is a strong clique.

First suppose that $a_{2} \in X$. Since

$$
\left(V_{3},\left\{b_{0}, z, d\right\} \backslash X, V(G) \backslash\left(\left\{b_{0}, z, d\right\} \cup V_{3}\right)\right)
$$

is not a pseudo-2-join, it follows that $\left\{b_{0}, z, d\right\} \backslash X$ is strongly stable, and so $d \in X$. But then b_{0} is simplicial, contradicting that (G, Z) is unbreakable. Thus $a_{2} \notin X$, and so $b_{2}, b_{3} \in X$; but then c_{1} is simplicial, again a contradiction. This proves (3).
(4) If $(G, Z) \in \mathcal{Z}_{11}$ then (G, Z) is a bubble.

From the definition of \mathcal{Z}_{11}, there is a three-cliqued trigraph (H, A, B, C) and a subset X of $V(H)$, such that (G, z) is a hex-expansion of ($H \backslash X, A \backslash X, B \backslash X, C \backslash X$), and (H, A, B, C) has the following properties.

- $|A|=n+2,|B|=n+1$ and $|C|=n \geqslant 2$, say $A=\left\{a_{0}, a_{1}, \ldots, a_{n}, z\right\}, B=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ and $C=$ $\left\{c_{1}, \ldots, c_{n}\right\}$.
- For $0 \leqslant i, j \leqslant n, a_{i}, b_{j}$ are adjacent if and only if $i=j$; and for $1 \leqslant i, j \leqslant n, c_{i}, a_{j}$ are antiadjacent if and only if $i=j$, and c_{i}, b_{j} are antiadjacent if and only if $i=j$.
- All other pairs are strongly antiadjacent.

Moreover, $X \subseteq A \cup B \cup C \backslash\left\{b_{0}, z\right\}$ with $|C \backslash X| \geqslant 2$. There are no semiadjacent pairs except

- a_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $b_{i} \in X$,
- b_{i} is semiadjacent to c_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $a_{i} \in X$,
- a_{i} is semiadjacent to b_{i} for at most one value of $i \in\{1, \ldots, n\}$, and if so then $c_{i} \in X$,
- a_{0} may be semiadjacent to b_{0}.

Let V_{1}, V_{2}, V_{3} be as in the definition of a hex-expansion; thus V_{1} is strongly complete to $(B \cup C) \backslash X$, and so on, and V_{2} is strongly complete to V_{3}. We may assume that for $1 \leqslant i \leqslant n$, not all three of a_{i}, b_{i}, c_{i} belong to X.

We claim that V_{1} is not strongly complete to V_{3}. For if $a_{0} \notin X$ then the claim follows since $\left(V_{3},\left\{a_{0}, b_{0}\right\}, V(G) \backslash\left(V_{3} \cup\left\{a_{0}, b_{0}\right\}\right)\right)$ is not a pseudo-2-join, and if $a_{0} \in X$ then the claim follows since b_{0} is not simplicial. Thus V_{1} is not strongly complete to V_{3}. If there exists $i \in\{1, \ldots, n\}$ such that $a_{i}, b_{i} \notin X$, then (since $|C \backslash X| \geqslant 2$) there exists $j \neq i$ such that $c_{j} \notin X$, and the quadruple $a_{i}, b_{i}, b_{0}, c_{j}$ violates the second assertion of 7.4. Thus there is no such i. We may assume that $c_{1}, c_{2} \notin X$. If $a_{1}, a_{2} \in X$, then c_{1}, c_{2} are twins if $b_{1}, b_{2} \in X$ and $\left(\left\{c_{1}, c_{2}\right\},\left\{b_{1}, b_{2}\right\} \backslash X\right)$ is a W-join otherwise, in either case a contradiction. So X contains at most one of a_{1}, a_{2}, and similarly at most one of b_{1}, b_{2}; and since it contains at least one of a_{1}, b_{1}, and at least one of a_{2}, b_{2}, we may assume that $a_{1}, b_{2} \notin X$, and $a_{2}, b_{1} \in X$. If $c_{3} \notin X$ then the same argument applied to c_{1}, c_{3} and to c_{2}, c_{3} shows that X contains exactly one of a_{1}, a_{3} and exactly one of a_{2}, a_{3}, which is impossible. Thus $c_{3}, \ldots, c_{n} \in X$. If $n \geqslant 3$, and $a_{3} \in X$ then $\left(\left\{b_{2}, b_{3}\right\},\left\{c_{2}\right\}\right)$ is a W-join, and if $b_{3} \in X$ then ($\left\{a_{1}, a_{3}\right\},\left\{c_{1}\right\}$) is a W-join, in either case a contradiction; so $n=2$. Now the circular order

$$
z, a_{0}, b_{0}, b_{2}, c_{1}, c_{2}, a_{1}, z
$$

(with a_{0} removed if it belongs to X) shows that ($H \backslash X, A \backslash X, B \backslash X, C \backslash X$) is a circular interval trigraph; and so 7.2 implies that G is a circular interval trigraph and hence (G, z) is a bubble by 7.1. This proves (4).

$$
\begin{equation*}
(G, Z) \notin \mathcal{Z}_{12} \tag{5}
\end{equation*}
$$

Suppose that $(G, Z) \in \mathcal{Z}_{12}$. From the definition of \mathcal{Z}_{12}, there is a three-cliqued trigraph (H, A, B, C) and a subset $X \subseteq A$ such that (G, Z) is a hex-expansion of ($H \backslash X, A \backslash X, B, C$), satisfying the following:

- $A=\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{9}, z\right\}, B=\left\{v_{1}, v_{2}\right\}$, and $C=\left\{v_{7}, v_{8}\right\}$;
- z is strongly anticomplete to $B \cup C ; v_{9}$ is strongly adjacent to v_{1}, v_{8} and strongly antiadjacent to $v_{2}, v_{7} ; v_{1}$ is strongly antiadjacent to $v_{4}, v_{5}, v_{6}, v_{7}$, semiadjacent to v_{3} and strongly adjacent to $v_{8} ; v_{2}$ is strongly antiadjacent to $v_{5}, v_{6}, v_{7}, v_{8}$ and strongly adjacent to $v_{3} ; v_{3}, v_{4}$ are strongly antiadjacent to $v_{7}, v_{8} ; v_{5}$ is strongly antiadjacent to $v_{8} ; v_{6}$ is semiadjacent to v_{8} and strongly adjacent to v_{7}; and either v_{2}, v_{4} are adjacent or v_{5}, v_{7} are adjacent;
- $X \subseteq\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$, such that
- v_{2} is not strongly anticomplete to $\left\{v_{3}, v_{4}\right\} \backslash X$,
- v_{7} is not strongly anticomplete to $\left\{v_{5}, v_{6}\right\} \backslash X$,
- if $X \cap\left\{v_{4}, v_{5}\right\}=\emptyset$ then v_{2} is adjacent to v_{4} and v_{5} is adjacent to v_{7}.

Let V_{1}, V_{2}, V_{3} be as in the definition of a hex-expansion. From the second assertion of 7.4 applied to $\left\{v_{9}, v_{1}, v_{2}, v_{8}\right\}$ it follows that V_{1} is complete to V_{3}, and similarly V_{1} is complete to V_{2}, so $V_{1} \cup$ $V_{2} \cup V_{3}$ is a clique. Now

$$
\left(\left\{v_{9}\right\},\left(A \backslash\left(X \cup\left\{v_{9}\right\}\right)\right) \cup V_{2} \cup V_{3},\left\{v_{1}, v_{8}\right\}, V_{1} \cup\left\{v_{2}, v_{7}\right\}\right)
$$

is not a biclique; and so there exist $u \in\left(A \backslash\left(X \cup\left\{v_{9}\right\}\right)\right) \cup V_{2} \cup V_{3}, v \in\left\{v_{1}, v_{8}\right\}$ and $w \in V_{1} \cup\left\{v_{2}, v_{7}\right\}$ such that $u, v, w \notin X, u, v$ are adjacent, and w is adjacent to one of them and antiadjacent to the other. Now there is a symmetry exchanging v_{i} with v_{9-i} for $1 \leqslant i \leqslant 8$, fixing v_{9} and z, exchanging B and C, and exchanging V_{2} and V_{3}. Because of this symmetry we may assume that $v=v_{1}$. Since v_{1} is strongly anticomplete to $\left\{v_{4}, v_{5}, v_{6}, z\right\} \cup V_{2}$, it follows that $u \in\left\{v_{3}\right\} \cup V_{3}$. If $u=v_{3}$ (and therefore $v_{3} \notin X$) then $w \in V_{1}$ (because v_{1}, v_{3} are both strongly adjacent to v_{2} and strongly antiadjacent to v_{7}); but then $v_{3}, v_{9}, v_{2}, v_{8}, v_{1}$ contradicts the third assertion of 7.4 since $V_{1} \neq \emptyset$. Thus $u \in V_{3}$, and therefore u, v are both strongly complete to $\left\{v_{2}\right\} \cup V_{1}$ and strongly anticomplete to v_{7}; but this is contrary to the existence of w. This proves (5).
(6) If $(G, Z) \in \mathcal{Z}_{13}$ then (G, Z) is a bubble.

From the definition of $\mathcal{Z}_{13},(G, Z)$ is a hex-expansion of a trisected circular interval trigraph in which every vertex is in a triad. From 7.2 we deduce that G is a circular interval trigraph, and so by 7.1 (G, z) is a bubble. This proves (6).
(7) $(G, Z) \notin \mathcal{Z}_{14}$.

Suppose that $(G, Z) \in \mathcal{Z}_{14}$. From the definition of $\mathcal{Z}_{14},(G, Z)$ is a hex-expansion of a three-cliqued trigraph ($G_{1}, A_{1}, A_{2}, A_{3}$), and G_{1} is a line trigraph of a graph H, satisfying the following.

- There are four vertices $v_{0}, v_{1}, v_{2}, v_{3}$ of H, such that v_{1}, v_{2}, v_{3} are pairwise nonadjacent, v_{1} is the only neighbour of v_{0}, and v_{1}, v_{2}, v_{3} have degree at least three.
- Every vertex of H different from $v_{0}, v_{1}, v_{2}, v_{3}$ is adjacent to both v_{2}, v_{3}, and at most one of them is nonadjacent to v_{1}.
- For $i=1,2,3, A_{i}$ is the set of edges of H incident with v_{i}, and z is the edge $v_{0} v_{1}$.

Let $V(H)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ where $k \geqslant 6$, and v_{5}, \ldots, v_{k-1} are adjacent to all of v_{1}, v_{2}, v_{3}. Let V_{1}, V_{2}, V_{3} be as in the definition of a hex-expansion. Thus V_{2} is strongly complete to V_{3}. From the second assertion of 7.4 applied to $\left\{v_{1} v_{4}, v_{2} v_{4}, v_{3} v_{4}, v_{2} v_{5}\right\}$ it follows that V_{1} is complete to V_{3}, and similarly V_{1} is complete to V_{2}. But then G is a line trigraph, and since $V(G)$ is not the union of two strong cliques, this contradicts Theorem 10.3 of [5]. This proves (7).
(8) $(G, Z) \notin \mathcal{Z}_{15}$.

Suppose that $(G, Z) \in \mathcal{Z}_{15}$. From the definition of \mathcal{Z}_{15}, there is a three-cliqued trigraph (H, A, B, C) and a subset $X \subseteq B \cup C$ such that (G, Z) is a hex-expansion of ($H \backslash X, A, B \backslash X, C \backslash X$), satisfying the following. (We are correcting an error from [5] here.)

- $V(H)=\left\{v_{1}, \ldots, v_{8}\right\}$ where $z=v_{8}$.
- v_{i}, v_{j} are strongly adjacent for $1 \leqslant i<j \leqslant 6$ with $j-i \leqslant 2$; the pairs $v_{1} v_{5}$ and $v_{2} v_{6}$ are strongly antiadjacent; v_{1}, v_{6}, v_{7} are pairwise strongly adjacent, and v_{7} is strongly antiadjacent to $v_{2}, v_{3}, v_{4}, v_{5} ; v_{7}, v_{8}$ are strongly adjacent, and v_{8} is strongly antiadjacent to v_{1}, \ldots, v_{6}; the pairs $v_{1} v_{4}$ and $v_{3} v_{6}$ are semiadjacent, and v_{2} is antiadjacent to v_{5}.
- $A=\left\{v_{7}, v_{8}\right\}, B=\left\{v_{1}, v_{2}, v_{3}\right\}, C=\left\{v_{4}, v_{5}, v_{6}\right\}$, and $X \subseteq\left\{v_{3}, v_{4}\right\}$.

Let V_{1}, V_{2}, V_{3} be as in the definition of a hex-expansion. There is a symmetry exchanging v_{i} with v_{7-i} for $1 \leqslant i \leqslant 6$, fixing v_{7} and z, exchanging B with C, and exchanging V_{2} with V_{3}. From the first assertion of 7.4 applied to $\left\{v_{1}, v_{5}, v_{6}, v_{7}\right\}$, it follows that V_{1} is complete to V_{2}, and from the symmetry V_{1} is complete to V_{3}. Moreover, by the fourth assertion of 7.4 applied to $v_{7}, v_{1}, v_{3}, v_{5}, v_{6}$, either $v_{3} \in X$ or $V_{2}=\emptyset$. Suppose that $v_{3} \in X$. Since v_{5} is not simplicial, it follows that v_{2} is semiadjacent to v_{5}. But then

$$
\left(\left\{v_{6}\right\}, V_{1} \cup V_{2} \cup\left\{v_{4}, v_{5}\right\} \backslash X,\left\{v_{1}, v_{7}\right\},\left\{v_{2}, v_{8}\right\} \cup V_{3}\right)
$$

is a biclique, a contradiction. Thus $v_{3} \notin X$, and so $V_{2}=\emptyset$. From the symmetry, $V_{3}=\emptyset$. But then ($\left\{v_{7}, v_{8}\right\}, V(G) \backslash\left\{v_{7}, v_{8}\right\}$) is a 1-join, a contradiction. This proves (8).

From (1)-(8), this proves 7.5 .

8. Stripes without ends

In view of 6.3 and 7.5 , to complete the proof of 5.1 and hence to prove 1.1, it remains to show the following:
8.1. If (G, \emptyset) is an unbreakable quasi-line stripe, then G is a circular interval trigraph.

Proving 8.1 is the goal of the remainder of the paper. We say that a trigraph G admits a hex-join if there exist A, B, C such that (G, A, B, C) is the hex-join of two three-cliqued trigraphs. The main theorem of [4] asserts:
8.2. Let G be a claw-free trigraph. Then either

- $G \in \mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{7}$, or
- G admits either twins, or a W-join, or a 0-join, or a 1-join, or a generalized 2-join, or a hex-join.

We begin with:
8.3. If (G, \emptyset) is an unbreakable quasi-line stripe, and either G is antiprismatic, or G does not admit a hex-join, then G is a circular interval trigraph.

Proof. Let (G, \emptyset) be an unbreakable quasi-line stripe, and suppose that G is not a circular interval trigraph. We must show that G is not antiprismatic, and G admits a hex-join. By hypothesis, G does not admit twins, a W-join, a 0 -join, a 1 -join or a generalized 2 -join, and has no simplicial vertex. Since every trigraph of H_{7}-type admits a generalized 2-join, it follows that G is not of H_{7}-type. Since G has no simplicial vertex, and $|V(G)| \geqslant 3$ (since G is not a circular interval trigraph), Theorem 10.3 of [5] implies that G is not a line trigraph. Consequently 4.1 implies that G is not antiprismatic.

Suppose that $G \in \mathcal{S}_{i}$ for some $i \in\{0, \ldots, 7\}$. By 5.2 and $5.3, i \neq 1,2,4,5$, and we have seen that $i \neq 0,7$, and $i \neq 3$ by hypothesis. Thus $i=6$; let a_{0}, b_{0} be as in the definition of \mathcal{S}_{6}. If a_{0}, b_{0} are strongly antiadjacent then they are both simplicial, which is impossible. If a_{0}, b_{0} are semiadjacent, let $V_{1}=\left\{a_{0}, b_{0}\right\}$ and $V_{2}=V(G) \backslash V_{1}$; since V_{1}, V_{2} are not strongly stable, (\emptyset, V_{1}, V_{2}) is a pseudo-2-join, a contradiction. This proves that $G \notin \mathcal{S}_{i}$ for $i \in\{0, \ldots, 7\}$. By $8.2, G$ admits a hex-join. This proves 8.3.

In view of 8.3 , we need to understand the quasi-line trigraphs G such that (G, \emptyset) is an unbreakable quasi-line stripe and G admits a hex-join and is not antiprismatic. To do so, we apply a theorem of [5] describing the structure of all three-cliqued claw-free trigraphs, and we next state that.

Here are some types of three-cliqued claw-free trigraphs.

- Let v_{1}, v_{2}, v_{3} be distinct nonadjacent vertices of a graph H, such that every edge of H is incident with one of v_{1}, v_{2}, v_{3}. Let v_{1}, v_{2}, v_{3} all have degree at least three, and let all other vertices of H have degree at least one. Moreover, for all distinct $i, j \in\{1,2,3\}$, let there be at most one vertex different from v_{1}, v_{2}, v_{3} that is adjacent to v_{i} and not to v_{j} in H. Let A, B, C be the sets of edges of H incident with v_{1}, v_{2}, v_{3} respectively, and let G be a line trigraph of H. Then (G, A, B, C) is a three-cliqued claw-free trigraph; let $\mathcal{T \mathcal { C } _ { 1 }}$ be the class of all such three-cliqued trigraphs such that every vertex is in a triad.
- We denote by $\mathcal{T} \mathcal{C}_{2}$ the class of trisected circular interval trigraphs (with notation as usual) with the additional properties that no three of F_{1}, \ldots, F_{k} have union Σ and that every vertex is in a triad.
- Let $G, J, A^{\prime}, B^{\prime}, C^{\prime}, X$ be as in the definition of a near-antiprismatic trigraph. Let $A=A^{\prime} \backslash X$ and define B, C similarly; then (G, A, B, C) is a three-cliqued claw-free trigraph. We denote by $\mathcal{T \mathcal { C } _ { 3 }}$ the class of all such three-cliqued trigraphs with the additional property that every vertex is in a triad.
- Let G be an antiprismatic trigraph and let A, B, C be a partition of $V(G)$ into three strong cliques; then (G, A, B, C) is a three-cliqued claw-free trigraph. We denote the class of all such threecliqued trigraphs by $\mathcal{T C}_{4}$. (In [2] we described explicitly all three-cliqued antiprismatic graphs, and their "changeable" edges; and this therefore provides a description of the three-cliqued antiprismatic trigraphs.) Note that in this case there may be vertices that are in no triads.
- $\mathcal{T \mathcal { C } _ { 5 }}$ comprises two classes of trigraphs. First, let H be the trigraph with vertex set $\left\{v_{1}, \ldots, v_{8}\right\}$ and adjacency as follows: v_{i}, v_{j} are strongly adjacent for $1 \leqslant i<j \leqslant 6$ with $j-i \leqslant 2$; the pairs
$v_{1} v_{5}$ and $v_{2} v_{6}$ are strongly antiadjacent; v_{1}, v_{6}, v_{7} are pairwise strongly adjacent, and v_{7} is strongly antiadjacent to $v_{2}, v_{3}, v_{4}, v_{5} ; v_{7}, v_{8}$ are strongly adjacent, and v_{8} is strongly antiadjacent to v_{1}, \ldots, v_{6}; the pairs $v_{1} v_{4}$ and $v_{3} v_{6}$ are semiadjacent, and v_{2} is antiadjacent to v_{5}. Let $A=\left\{v_{1}, v_{2}, v_{3}\right\}, B=\left\{v_{4}, v_{5}, v_{6}\right\}$ and $C=\left\{v_{7}, v_{8}\right\}$. Let $X \subseteq\left\{v_{3}, v_{4}\right\}$; then $(H \backslash X, A \backslash X, B \backslash X, C)$ is a three-cliqued claw-free trigraph, and all its vertices are in triads.
- The second class of trigraphs in $\mathcal{T C}_{5}$ is as follows. Let H be the trigraph with vertex set $\left\{v_{1}, \ldots, v_{9}\right\}$, and adjacency as follows: the sets $A=\left\{v_{1}, v_{2}\right\}, B=\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{9}\right\}$ and $C=$ $\left\{v_{7}, v_{8}\right\}$ are strong cliques; v_{9} is strongly adjacent to v_{1}, v_{8} and strongly antiadjacent to v_{2}, v_{7}; v_{1} is strongly antiadjacent to $v_{4}, v_{5}, v_{6}, v_{7}$, semiadjacent to v_{3} and strongly adjacent to $v_{8} ; v_{2}$ is strongly antiadjacent to $v_{5}, v_{6}, v_{7}, v_{8}$ and strongly adjacent to $v_{3} ; v_{3}, v_{4}$ are strongly antiadjacent to $v_{7}, v_{8} ; v_{5}$ is strongly antiadjacent to $v_{8} ; v_{6}$ is semiadjacent to v_{8} and strongly adjacent to v_{7}; and the adjacency between the pairs $v_{2} v_{4}$ and $v_{5} v_{7}$ is arbitrary. Let $X \subseteq\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$, such that
- v_{2} is not strongly anticomplete to $\left\{v_{3}, v_{4}\right\} \backslash X$,
- v_{7} is not strongly anticomplete to $\left\{v_{5}, v_{6}\right\} \backslash X$,
- if $v_{4}, v_{5} \notin X$ then v_{2} is adjacent to v_{4} and v_{5} is adjacent to v_{7}.

Then ($H \backslash X, A, B \backslash X, C$) is a three-cliqued claw-free trigraph. If in addition every vertex is in a triad, we say that $(H \backslash X, A, B \backslash X, C) \in \mathcal{T C}_{5}$.

If (G, A, B, C) is a three-cliqued trigraph, and H is a thickening of G, let $X_{v}(v \in V(G))$ be the corresponding strong cliques of H; then $\cup_{v \in A} X_{v}$ is a strong clique A^{\prime} say of H, and if we define B^{\prime}, C^{\prime} from B, C similarly, then $\left(H, A^{\prime}, B^{\prime}, C^{\prime}\right)$ is a three-cliqued trigraph, that we say is a thickening of (G, A, B, C). If (G, A, B, C) is a three-cliqued trigraph, and $\{P, Q, R\}=\{A, B, C\}$, then (G, P, Q, R) is also a three-cliqued trigraph, and we say it is a permutation of (G, A, B, C).

Let $n \geqslant 0$, and for $1 \leqslant i \leqslant n$, let ($G_{i}, A_{i}, B_{i}, C_{i}$) be a three-cliqued trigraph, where G_{1}, \ldots, G_{n} all have at least one vertex and are pairwise vertex-disjoint. Let $A=A_{1} \cup \cdots \cup A_{n}, B=B_{1} \cup \cdots \cup B_{n}$, and $C=C_{1} \cup \cdots \cup C_{n}$, and let G be the trigraph with vertex set $V\left(G_{1}\right) \cup \cdots \cup V\left(G_{n}\right)$ and with adjacency as follows:

- for $1 \leqslant i \leqslant n, G \mid V\left(G_{i}\right)=G_{i}$;
- for $1 \leqslant i<j \leqslant n, A_{i}$ is strongly complete to $V\left(G_{j}\right) \backslash B_{j} ; B_{i}$ is strongly complete to $V\left(G_{j}\right) \backslash C_{j}$; and C_{i} is strongly complete to $V\left(G_{j}\right) \backslash A_{j}$; and
- for $1 \leqslant i<j \leqslant n$, if $u \in A_{i}$ and $v \in B_{j}$ are adjacent then u, v are both in no triads; and the same applies if $u \in B_{i}$ and $v \in C_{j}$, and if $u \in C_{i}$ and $v \in A_{j}$.

In particular, A, B, C are strong cliques, and so (G, A, B, C) is a three-cliqued trigraph; we call the sequence ($G_{i}, A_{i}, B_{i}, C_{i}$) $(i=1, \ldots, n$) a worn hex-chain for (G, A, B, C). When $n=2$ we say that (G, A, B, C) is a worn hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and ($G_{2}, A_{2}, B_{2}, C_{2}$).

Theorem 4.1 of [5] asserts the following:
8.4. Every three-cliqued claw-free trigraph admits a worn hex-chain into terms each of which is a thickening of a permutation of a member of one of $\mathcal{T} \mathcal{C}_{1}, \ldots, \mathcal{T} \mathcal{C}_{5}$.

To complete the proof of 8.1, we need a few more lemmas.
8.5. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, \emptyset) is an unbreakable stripe, and such that (G, A, B, C) is a hex-join of ($G_{1}, A_{1}, B_{1}, C_{1}$) and ($G_{2}, A_{2}, B_{2}, C_{2}$). Then ($G_{1}, A_{1}, B_{1}, C_{1}$) is not a permutation of a member of $\mathcal{T} \mathcal{C}_{1}$.

Proof. Suppose it is; thus $\left(G_{1}, A_{1}, B_{1}, C_{1}\right) \in \mathcal{T C}$. Choose H, v_{1}, v_{2}, v_{3} as in the definition of $\mathcal{T C}$. Suppose first that some vertex u of H is adjacent to all of v_{1}, v_{2}, v_{3}. Let e_{i} be the edge $u v_{i}$ for $i=1,2,3$. Since v_{1} has degree at least three, there is an edge f_{1} incident with v_{1} and not with u; and so $e_{1}, f_{1} \in A, e_{2} \in B, e_{3} \in C$, and by the first assertion of 7.3 (with the parts of the hex-join
exchanged) it follows that A_{2} is strongly complete to C_{2}. Similarly A_{2}, B_{2}, C_{2} are pairwise strongly complete, and so G_{2} is a strong clique. Since G has no twins, it follows that $\left|A_{2}\right|,\left|B_{2}\right|,\left|C_{2}\right| \leqslant 1$. Thus G is a line trigraph (if there exists $a_{2} \in A_{2}$, add a_{2} to H as an edge joining v_{1}, v_{2}, and similarly for B_{2}, C_{2}). But this contradicts Theorem 10.3 of [5].

Thus no such vertex u exists, and so every vertex different from v_{1}, v_{2}, v_{3} has degree at most two. Suppose next that some vertex of H has degree one; say u is adjacent only to v_{1}. Let u^{\prime} be another neighbour of v_{1}. If u^{\prime} also has degree one, then $u v_{1}, u^{\prime} v_{1}$ are twins in G, a contradiction. If u^{\prime} has degree two in H, let u^{\prime} be adjacent to v_{1}, v_{2} say; then ($\left.\left\{u v_{1}, u^{\prime} v_{1}\right\},\left\{u^{\prime} v_{2}\right\}\right)$ is a W-join of G, a contradiction. This proves that every vertex in H different from v_{1}, v_{2}, v_{3} has degree two. Suppose that u_{1}, u_{2} are distinct vertices of H, both adjacent to both v_{1}, v_{2}. Then ($\left.\left\{u_{1} v_{1}, u_{2} v_{1}\right\},\left\{u_{1} v_{2}, u_{2} v_{2}\right\}\right)$ is a W-join of G, a contradiction. It follows that no two vertices in $V(H) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ have the same neighbours; but this is impossible since v_{1}, v_{2}, v_{3} have degree at least three. This proves 8.5.
8.6. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, \emptyset) is an unbreakable stripe, and such that (G, A, B, C) is a hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. Suppose that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a permutation of a member of $\mathcal{T} \mathcal{C}_{3}$. Then $\left|V\left(G_{1}\right)\right|=6$ and $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a trisected circular interval trigraph.

Proof. Suppose (without loss of generality) that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right) \in \mathcal{T} \mathcal{C}_{3}$. Let

$$
J, A^{\prime}, B^{\prime}, C^{\prime}, a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n}, c_{1}, \ldots, c_{n}, X
$$

be as in the definition of near-antiprismatic, such that

$$
\left(G_{1}, A_{1}, B_{1}, C_{1}\right)=\left(J \backslash X, A^{\prime} \backslash X, B^{\prime} \backslash X, C^{\prime} \backslash X\right)
$$

Since $\left|C^{\prime} \backslash X\right| \geqslant 2$, we may assume that for $1 \leqslant i \leqslant n$, not all of a_{i}, b_{i}, c_{i} belong to X (by reducing n by one and removing these three vertices from J).
(1) $c_{1}, \ldots, c_{n} \notin X$.

For suppose that $c_{i} \in X$. Since not all of $a_{i}, b_{i}, c_{i} \in X$, we may assume that $a_{i} \notin X$ say. But every vertex of $J \backslash X$ is in a triad, and yet every triad of J containing a_{i} also contains c_{i}, a contradiction. This proves (1).
(2) X contains at most one of a_{1}, \ldots, a_{n} and at most one of b_{1}, \ldots, b_{n}.

For suppose that $a_{1}, a_{2} \in X$ say. By (1), $c_{1}, c_{2} \notin X$. If $b_{1}, b_{2} \in X$ then c_{1}, c_{2} are twins of $J \backslash X$ and hence of G, and otherwise ($\left\{c_{1}, c_{2}\right\},\left\{b_{1}, b_{2}\right\} \backslash X$) is a W-join of $J \backslash X$ and hence of G, a contradiction. This proves (2).
(3) For $1 \leqslant i \leqslant n, X$ contains at least one of a_{i}, b_{i}.

For suppose that $a_{1}, b_{1} \notin X$ say. By (1), $c_{1}, c_{2} \notin X$. By three applications of 7.3 , to $\left\{a_{0}, a_{1}, b_{1}, c_{2}\right\}$, $\left\{b_{0}, a_{1}, b_{1}, c_{2}\right\}$ and $\left\{c_{1}, a_{1}, b_{1}, c_{2}\right\}$, it follows that A_{2}, B_{2}, C_{2} are pairwise strongly complete. Since a_{0} is not a simplicial vertex of G we deduce that a_{0}, b_{0} are adjacent; but then

$$
\left(A_{2},\left\{a_{0}, b_{0}\right\}, V(G) \backslash\left(A_{2} \cup\left\{a_{0}, b_{0}\right\}\right)\right)
$$

is a pseudo-2-join of G, a contradiction. This proves (3).
From (1)-(3) it follows that $n=2$ and we may assume that $X=\left\{a_{1}, b_{2}\right\}$. But then $J \backslash X$ is a trisected circular interval trigraph; the appropriate circular order is

$$
a_{0}, a_{2}, c_{1}, c_{2}, b_{1}, b_{0}
$$

This proves 8.6.
8.7. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, \emptyset) is an unbreakable stripe, and such that (G, A, B, C) is a hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. Then $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is not a permutation of a member of $\mathcal{T} \mathcal{C}_{5}$.

Proof. Suppose (without loss of generality) that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right) \in \mathcal{T} \mathcal{C}_{5}$. There are two cases in the definition of $\mathcal{T \mathcal { C } _ { 5 }}$. Let $H, v_{1}, \ldots, v_{8}, X$ be as in the first case, with

$$
\left(G_{1}, A_{1}, B_{1}, C_{1}\right)=\left(H \backslash X,\left\{v_{1}, v_{2}, v_{3}\right\} \backslash X,\left\{v_{4}, v_{5}, v_{6}\right\} \backslash X,\left\{v_{7}, v_{8}\right\}\right)
$$

From 7.3 applied to $\left\{v_{1}, v_{6}, v_{7}, v_{8}\right\}$ it follows that B_{2}, C_{2} are strongly complete. But then v_{8} is a simplicial vertex of G, a contradiction.

Now let $H, v_{1}, \ldots, v_{9}, X$ be as in the second case of the definition of $\mathcal{T} \mathcal{C}_{5}$, with

$$
\left(G_{1}, A_{1}, B_{1}, C_{1}\right)=\left(H \backslash X,\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{9}\right\} \backslash X,\left\{v_{7}, v_{8}\right\}\right)
$$

From three applications of 7.3 , to $\left\{v_{2}, v_{1}, v_{8}, v_{9}\right\},\left\{v_{7}, v_{1}, v_{8}, v_{9}\right\}$ and to $\left\{v_{i}, v_{1}, v_{8}, v_{9}\right\}$ (where $i \in$ $\{3,4\}$ is chosen so that $v_{i} \notin X$; this is possible since v_{2} is not strongly anticomplete to $\left.\left\{v_{3}, v_{4}\right\} \backslash X\right)$, we deduce that A_{2}, B_{2}, C_{2} are pairwise strongly complete. If $C_{2}=\emptyset$ then

$$
\left(\left\{v_{9}\right\}, A_{2} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \backslash X, B_{2} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} \backslash X\right)
$$

is a generalized 2 -join of G, a contradiction. Thus $C_{2} \neq \emptyset$. By the second assertion of 7.3, applied to $\left\{v_{1}, v_{9}, v_{6}, v_{7}, v_{8}\right\}$, it follows that $v_{6} \in X$. Hence $v_{5} \notin X$ and v_{5}, v_{7} are adjacent; and so

$$
\left(B_{2},\left\{v_{5}, v_{7}\right\}, V(G) \backslash\left(B_{2} \cup\left\{v_{5}, v_{7}\right\}\right)\right)
$$

is a pseudo-2-join of G, a contradiction. This proves 8.7.

Finally, we shall need the following, Theorem 16.1 of [4]:
8.8. Let G be a claw-free trigraph, and let B_{1}, B_{2}, B_{3} be strong cliques in G. Let $Z=B_{1} \cup B_{2} \cup B_{3}$. Suppose that:

- $Z \neq V(G)$,
- there are two triads $T_{1}, T_{2} \subseteq Z$ with $\left|T_{1} \cap T_{2}\right|=2$, and
- there is no triad T in G with $|T \cap Z|=2$.

Then either

- there exists $V \subseteq Z$ with $T_{1}, T_{2} \subseteq V$ such that V is a union of triads, and G is a hex-join of $G \mid V$ and $G \mid(V(G) \backslash V)$, where $\left(V \cap B_{1}, V \cap B_{2}, V \cap B_{3}\right)$ is the corresponding partition of V into strong cliques, or
- there are twins in one of B_{1}, B_{2}, B_{3}, both in triads, or
- there is a W-join $\left(V_{1}, V_{2}\right)$ such that V_{1} is a subset of one of B_{1}, B_{2}, B_{3} and V_{2} is a subset of another.

Now we are ready for the proof of 8.1.

Proof of 8.1. Let G be a quasi-line trigraph such that (G, \emptyset) is an unbreakable stripe. We must show that G is a circular interval trigraph. By 8.3 , we may assume that G is not antiprismatic, and admits a hex-join.
(1) There are three cliques A, B, C such that (G, A, B, C) is a hex-join of $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)(i=1,2)$ where G_{1} is not antiprismatic and every vertex of G_{1} is in a triad.

For since G admits a hex-join, we can choose three cliques A, B, C such that (G, A, B, C) is a hexjoin of some $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)(i=1,2)$. Since G is not antiprismatic, one of G_{1}, G_{2} is not antiprismatic,
say G_{1}. Let A_{1}^{\prime} be the set of all vertices in A_{1} that are in triads, and define $B_{1}^{\prime}, C_{1}^{\prime}$ similarly. Let $Z=A_{1}^{\prime} \cup B_{1}^{\prime} \cup C_{1}^{\prime}$. Since G_{1} is not antiprismatic, there are two triads T_{1}, T_{2} included in Z with two elements in common. If T is a triad with $|T \cap Z|=2$, and t is its element not in Z, then $t \notin V\left(G_{1}\right)$ from the definition of $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}$, and $t \notin V\left(G_{2}\right)$ from the definition of a hex-join, a contradiction. Thus there is no triad T with $|T \cap Z|=2$. Since G is slim, there are no twins and no W-join in G, and so from 8.8 applied to Z and G, we deduce that there exists $V \subseteq Z$ with $T_{1}, T_{2} \subseteq V$ such that V is a union of triads, and G is a hex-join of $G \mid V$ and $G \mid(V(G) \backslash V)$ (with appropriate choices of cliques). This proves (1).

Let us choose A, B, C, G_{1}, G_{2} etc. as in (1) with $\left|V\left(G_{1}\right)\right|$ minimum.
(2)
$\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ does not admit a worn hex-join.
For suppose that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a worn hex-join of $\left(H_{1}, P_{1}, Q_{1}, R_{1}\right)$ and $\left(H_{2}, P_{2}, Q_{2}, R_{2}\right)$ say. The worn hex-join is actually a hex-join since every vertex of G_{1} is in triad. One of H_{1}, H_{2} is not antiprismatic, since G_{1} is not antiprismatic; and for $i=1,2$, every vertex of H_{i} belongs to a triad of H_{i}, since the same holds for G_{1}. Now

$$
\left(H_{1}, P_{1}, Q_{1}, R_{1}\right),\left(H_{2}, P_{2}, Q_{2}, R_{2}\right),\left(G_{2}, A_{2}, B_{2}, C_{2}\right)
$$

is a hex-chain for (G, A, B, C), and so (G, A, B, C) is the hex-join of $\left(H_{1}, P_{1}, Q_{1}, R_{1}\right)$ and $\left(H_{3}, P_{3}\right.$, $\left.Q_{3}, R_{3}\right)$, where $\left(H_{3}, P_{3}, Q_{3}, R_{3}\right)$ is the hex-join of $\left(H_{2}, P_{2}, Q_{2}, R_{2}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$; so from the minimality of $\left|V\left(G_{1}\right)\right|$ it follows that H_{1} is antiprismatic. But

$$
\left(H_{2}, P_{2}, Q_{2}, R_{2}\right),\left(G_{2}, A_{2}, B_{2}, C_{2}\right),\left(H_{1}, Q_{1}, R_{1}, P_{1}\right)
$$

is also a hex-chain for $\left(G, A^{\prime}, B^{\prime}, C^{\prime}\right)$ (for some choice of $\left.A^{\prime}, B^{\prime}, C^{\prime}\right)$, and so by the same argument H_{2} is antiprismatic, a contradiction. This proves (2).

From 8.4 it follows that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a thickening of a permutation of some member of one of $\mathcal{T} \mathcal{C}_{1}, \ldots, \mathcal{T} \mathcal{C}_{5}$. Since G is slim, it follows that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is not a non-trivial thickening of any three-cliqued trigraph; and so $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ is a permutation of a member of $\mathcal{T} \mathcal{C}_{1}, \ldots, \mathcal{T} \mathcal{C}_{5}$, say of $\mathcal{T} \mathcal{C}_{i}$. Now $i \neq 4$ since G_{1} is not antiprismatic. Suppose that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right) \notin \mathcal{T} \mathcal{C}_{2}$. Then $i \in\{1,3,5\}$, contrary to $8.5,8.6$, and 8.7 . This proves that $\left(G_{1}, A_{1}, B_{1}, C_{1}\right) \in \mathcal{T} \mathcal{C}_{2}$. Since G_{1} is not antiprismatic, there is a triad in G_{1}. Consequently G is a circular interval trigraph by 7.2. This completes the proof of 8.1 , and hence of 1.1 .

References

[1] Maria Chudnovsky, Paul Seymour, The structure of claw-free graphs, in: Surveys in Combinatorics 2005, in: London Math. Soc. Lecture Note Ser., vol. 327, 2005, pp. 153-171.
[2] Maria Chudnovsky, Paul Seymour, Claw-free graphs. I. Orientable prismatic graphs, J. Combin. Theory Ser. B 97 (2007) 867903.
[3] Maria Chudnovsky, Paul Seymour, Claw-free graphs. II. Non-orientable prismatic graphs, J. Combin. Theory Ser. B 98 (2008) 249-290.
[4] Maria Chudnovsky, Paul Seymour, Claw-free graphs. IV. Decomposition theorem, J. Combin. Theory Ser. B 98 (2008) $839-938$.
[5] Maria Chudnovsky, Paul Seymour, Claw-free graphs. V. Global structure, J. Combin. Theory Ser. B 98 (2008) 1373-1410.

[^0]: ${ }^{1}$ This research was partially conducted while the author served as a Clay Mathematics Institute Research Fellow at Princeton University, and partially supported by NSF grant DMS-0758364.
 2 Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

