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1. Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) If X C V(G), the subgraph G|X
induced on X is the subgraph with vertex set X and edge set all edges of G with both ends in X.
(V(G) and E(G) denote the vertex and edge sets of G, respectively.) We say that X C V(G) is a claw
in G if |X| =4 and G|X is isomorphic to the complete bipartite graph K; 3. We say G is claw-free if
no X C V(G) is a claw in G.

In the earlier papers of this sequence, we gave a construction for all claw-free graphs; we proved
that every claw-free graph can be built by piecing together building blocks from some explicitly-
described classes. See [1] for a survey of this material.

A graph G is a quasi-line graph if for every vertex v, the set of neighbours of v can be partitioned
into two sets A, B in such a way that A and B are both cliques. (Note that there may be edges
between A and B.) Thus all line graphs are quasi-line graphs, and all quasi-line graphs are claw-free,
but both converse statements are false. Quasi-line graphs make an interesting half-way stage between
line graphs and claw-free graphs; for instance, a number of theorems about line graphs extend to
quasi-line graphs and yet not to claw-free graphs in general.

1 This research was partially conducted while the author served as a Clay Mathematics Institute Research Fellow at Princeton
University, and partially supported by NSF grant DMS-0758364.
2 Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.
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The purpose of this paper is to give a construction for all quasi-line graphs in the same way as
the previous papers of this sequence gave a construction for all claw-free graphs. For the most part,
we just specialize the earlier theorem; we have to understand which graphs built from our earlier
construction are quasi-line graphs. Mostly this is straightforward, but there is some difficulty when
the stability number is small. For instance, all graphs with stability number two are claw-free, and
such graphs were one of our “building block” types; but they are not all quasi-line, and it is non-
trivial to figure out which such graphs are indeed quasi-line. A similar (but easier) situation arises
with stability number three, as we shall see. Most of the work of this paper arises from trying to
analyse the cases when stability number is at most three.

To state the main theorem we need a number of definitions. First, as in the earlier papers, we
work with slightly more general objects than graphs, that we call “trigraphs”. A trigraph G consists of
a finite set V(G) of vertices, and a map 6; : V(G)? — {1, 0, —1}, satisfying:

e for all v e V(G), 6g(v,v) =0,
e for all distinct u, v e V(G), 0g(u, v) =0g(v, u),
o for all distinct u, v, w € V(G), at most one of 6¢(u, v), ¢ (u, w) =0.

For distinct u, v in V(G), we say that u, v are strongly adjacent if 6¢(u, v) = 1, strongly antiadjacent
if 6g(u,v) = —1, and semiadjacent if 6;(u,v) = 0. We say that u, v are adjacent if they are either
strongly adjacent or semiadjacent, and antiadjacent if they are either strongly antiadjacent or semi-
adjacent. Also, we say u is adjacent to v and u is a neighbour of v if u, v are adjacent (and a strong
neighbour if u, v are strongly adjacent); u is antiadjacent to v and u is an antineighbour of v if u, v
are antiadjacent (and a strong antineighbour if u, v are strongly antiadjacent).

For a vertex a and a set B C V(G) \ {a}, we say that a is complete to B or B-complete if a is
adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete if a is antiadjacent to
every vertex in B. For two disjoint subsets A and B of V(G) we say that A is complete, respectively
anticomplete, to B, if every vertex in A is complete, respectively anticomplete, to B. (We sometimes
say A is B-complete, or the pair (A, B) is complete, meaning that A is complete to B.) Similarly, we
say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on. Let us
say a trigraph G is connected if there is no partition (V1, V;) of V(G) such that V1, V;, #¢ and V; is
strongly anticomplete to V5. A clique in G is a subset X C V(G) such that every two members of X
are adjacent, and a strong clique is a subset such that every two of its members are strongly adjacent.
A subset of V(G) is stable if every two of its members are antiadjacent, and strongly stable if every
two of its members are strongly antiadjacent. A trigraph G is quasi-line if for every vertex v, the set of
neighbours of v is the union of two strong cliques. Our objective is to describe all quasi-line trigraphs.

We say a trigraph H is a thickening of a trigraph G if for every v € V(G) there is a nonempty
subset X, C V(H), all pairwise disjoint and with union V (H), satisfying the following:

for each v € V(G), X, is a strong clique of H,

if u,v € V(G) are strongly adjacent in G then X, is strongly complete to X, in H,

if u,v € V(G) are strongly antiadjacent in G then X, is strongly anticomplete to X, in H,

if u, v € V(G) are semiadjacent in G then X, is neither strongly complete nor strongly anticom-
plete to X, in H.

This thickening is non-trivial if |V (H)| > |V (G)|.

Let X be a circle, and let Fq,..., Fy € X be homeomorphic to the interval [0, 1], such that no two
of Fq,..., Fi share an endpoint. Now let V C X be finite, and let G be a trigraph with vertex set V
in which, for distinct u,v eV,

e if u, v € F; for some i then u, v are adjacent, and if also at least one of u, v belongs to the interior
of F; then u, v are strongly adjacent,
e if there is no i such that u, v € F; then u, v are strongly antiadjacent.



M. Chudnovsky, P. Seymour / Journal of Combinatorial Theory, Series B 102 (2012) 1267-1294 1269

Such a trigraph G is called a circular interval trigraph, and if in addition no three of Fq,..., Fy have
union X, we say G is a long circular interval trigraph. It is easy to see that circular interval trigraphs
are quasi-line.

The same construction, using a line rather than a circle, yields the “linear interval trigraphs”. More
precisely, we say G is a linear interval trigraph if its vertex set can be numbered {vq,..., v,} in such a
way that for 1 <i< j<k<n, if v;, vy are adjacent then v; is strongly adjacent to both v;, v. Given
such a trigraph G and numbering v1,..., v, with n > 2, we call (G, {v1, vy}) a linear interval stripe if
no vertex is semiadjacent to v1 or to vy, and vq, v, are strongly antiadjacent, and there is no vertex
adjacent to both vq, vj.

A spot is a pair (G, Z) such that G has three vertices say v, z1, z2, and v is strongly adjacent to
z1, 23, and z1, zp are strongly antiadjacent, and Z = {z1, z2}.

Let G be a circular interval trigraph, and let X, Fq,..., F; be as in the corresponding definition.
Let z € V(G) belong to at most one of Fq,..., Fy; and if z € F; say, let no vertex be an endpoint of
F;. We call the pair (G, {z}) a bubble.

If H is a thickening of G, where X, (v € V(G)) are the corresponding subsets, and Z C V(G) and
|Xy| =1 for each v € Z, let Z’' be the union of all X, (v € Z); we say that (H, Z’) is a thickening of
(G, 2).

Here is a construction; a trigraph G that can be constructed in this manner is called a linear interval
join.

e Start with a trigraph Ho that is a disjoint union of strong cliques. Let Xi,..., Xy € V(Hp) be
pairwise disjoint strongly stable sets, each of cardinality one or two, and with union V (Hp).
e For 1 <i<k, let (Gj, Y;) be either a spot, or a thickening of a bubble, or a thickening of a linear

interval stripe, where Hg, G1, ..., Gy are pairwise vertex-disjoint, and such that |X;| = |Y;| for
1 <i<k; and for each i, take a bijection between X; and Y;.
e We define Hi,..., Hy recursively as follows. For 1 <i <k, having defined H;_1, let H; be the

trigraph obtained from the disjoint union of H;_; and G; by making the neighbour set of x in
H;i_1 strongly complete to the neighbour set of y in G;, and then deleting x, y, for each x € X;
and its mate y € Y;. (The order of these operations does not affect the final outcome.)

e Let G = Hy.

Note that if each (Gj, Y;) is a spot, then the trigraph we construct is a line graph of a multigraph.
Now we can state our main theorem:

1.1. Every connected quasi-line trigraph is either a linear interval join or a thickening of a circular interval
trigraph.

2. Quasi-line trigraphs with no triad

If G is a trigraph and X C V(G), we define the trigraph G|X induced on X as follows. Its vertex set
is X, and its adjacency function is the restriction of 8¢ to X2. Isomorphism for trigraphs is defined
in the natural way, and if G, H are trigraphs, we say that G contains H and H is a subtrigraph of G
if there exists X C V(G) such that H is isomorphic to G|X. Let us say an anticycle in a trigraph G is
a subtrigraph C with vertex set {vq, ..., vi}, where k >3, v;, v;;1 are antiadjacent for 1 <i <k, and
v1, Vi are antiadjacent; we call k the length of the anticycle, and say the anticycle is odd if k is odd.
A vertex v is a centre for an anticycle C if v ¢ V(C) and v is adjacent to every vertex of C. Thus, G is
quasi-line if and only if no odd anticycle has a centre.

A triad in a trigraph G means a stable set with cardinality three. A claw in a trigraph G is a subset
{ap,ay,az,a3} € V(G), such that {aj, ap,as} is a triad and ag is complete to {ay, az, as}. If no subset
of V(G) is a claw, we say that G is claw-free.

A 5-wheel is a trigraph with six vertices v1,..., vg, where for 1 <i < j <5, if j—ie€{1,4} then
v, v are adjacent, and if j —i € {2,3} then v;,v; are antiadjacent, and vg is adjacent to all of
V1,...,Vs. (For the reader’s convenience, we follow the convention that when we list the vertices of

a 5-wheel, we list them in the order just given.)
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In [5] we showed that every claw-free trigraph can be built by piecing together trigraphs from
some explicitly-described basic classes, and much of the proof of 1.1 consists of figuring out which
trigraphs in these basic classes are quasi-line. One basic class was the class of all trigraphs with no
triad; all such trigraphs are claw-free, but mostly they are not quasi-line, so we begin in this section
by studying these.

Two strongly adjacent vertices of a trigraph G are called twins if (apart from each other) they have
the same neighbours and the same antineighbours in G, and if there are two such vertices, we say “G
admits twins”.

Let A, B be disjoint subsets of V(G). The pair (A, B) is called a homogeneous pair in G if A, B are
strong cliques, and for every vertex v € V(G) \ (A U B), v is either strongly A-complete or strongly
A-anticomplete and either strongly B-complete or strongly B-anticomplete. Let (A, B) be a homoge-
neous pair, such that A is neither strongly complete nor strongly anticomplete to B, and at least one
of A, B has at least two members. In these circumstances we call (A, B) a W-join.

We say a trigraph is slim if it does not admit twins or a W-join. Every trigraph G is a thickening
of a slim trigraph H, and if G is quasi-line then so is H, so we may normally confine ourselves to
slim trigraphs.

Let H be a graph, and let G be a trigraph with V(G) = E(H). We say that G is a line trigraph of H
if for all distinct e, f € E(H):

e if e, f have a common end in H then they are adjacent in G, and if they have a common end of
degree at least three in H, then they are strongly adjacent in G,
e if e, f have no common end in H then they are strongly antiadjacent in G.

We will show:

2.1. Let G be a slim quasi-line trigraph with no triad. Then either G is a line trigraph of a subgraph of Ks, or G
is a circular interval trigraph.

We begin with:

2.2. Let G be aslim quasi-line trigraph with no triad, and let v1,...,vg € V(G) be distinct, such that
{v1, va, vs}, {va, v3, v}, {v3, v4, v7}, {v4, v1, vg} and {vs, ve, V7, vg} are cliques, and every pair of vertices
in{vq, ..., vg} not contained in one of these five cliques is antiadjacent. Then G is a line trigraph of a subgraph
of Ks.

Proof. Since {vi,vy,Vv7} is not a triad, v{,v, are strongly adjacent; since {vq, Vs, vs} is not a
triad, vq,vs are strongly adjacent; since {va,Vs,Vg} is not a triad, vs,vg are strongly adja-
cent; and since {vi, Vs, vg, V7, V4, vg} does not induce a 5-wheel, vs,v7 are strongly adjacent.
Since {v3, v3, v4, Vg, V5, v1} does not induce a 5-wheel, vq, v3 are strongly antiadjacent; and since
{v1, va, v3, vy, vg, vg} does not induce a 5-wheel, vq, vg are strongly antiadjacent. From the sym-
metry it follows that every pair of distinct members of {vi,...,vg} are either strongly adjacent or
strongly antiadjacent. Consequently the subtrigraph induced on {vq,...,vg} is a line trigraph of a
graph H with five vertices hy, ..., hs and eight edges

hihy, hohs, hshy, hihg, hohs, hshs, hshs, hihs

(in order corresponding to vq,...,vg). For 1 <i < j <5, let fj; be the edge of H with ends h;, h;
if it exists. (Thus we have renamed the vertices vq,...,vg in the fj; notation, since this is more
convenient.) For each v € V(G) \ E(H), we say that v is of ij-type (with respect to H), where 1 <i <
j <5, if for every edge fyj of H, v is strongly adjacent to fy; if and only if {i, j} N {i’, j'} # ¥, and
otherwise v is strongly antiadjacent to fi .

(1) Forevery vertex v € V(G) \ E(H) there exist i < j such that v is of ij-type.
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For let N be the set of neighbours of v in E(H), and let M be the set of antineighbours of v in
E(H). Since there is no triad, not both fi2, f33 € M, and not both f,3, f14 € M, so we may assume
that fi2, f3 ¢ M. Suppose that f34 € M. Since {v, f34, f25} is not a triad, fy5 ¢ M, and similarly
f15 ¢ M. Suppose in addition that f35 € N. Since {v, f23, f34, fas5, f15, f35} does not induce a 5-wheel,
it follows that fs5 ¢ M. Since {f12, f23, f35, fas, f14, v} does not induce a 5-wheel, fi14 ¢ N; since
{v, f1a, f35} is not a triad, f35 ¢ M; and since {f12, f23, f34, fa5, f15, v} does not induce a 5-wheel,
f3a4 ¢ N. But then v is of 25-type. We may therefore assume that f35 ¢ N. Since {v, fi4, f35} is
not a triad, f14 ¢ M; since {f1s, f25, f23, f34, f14, v} does not induce a 5-wheel, f34 ¢ N; and since
{v, f25, f35, f34, f14, f45} does not induce a 5-wheel, fs5 ¢ N. But then v is of 12-type.

We may therefore assume that f34 ¢ M, and similarly that fi14 ¢ M. Now not both fi5, fo5 € N,
since {f1s, f25, f23, f34, f14, v} does not induce a 5-wheel; so from the symmetry, we may assume
that fis, f35 ¢ N. Since {v, f12, f25, f35, f34, f23} does not induce a 5-wheel, f5 ¢ M, and similarly
fas ¢ M; but then v is of 24-type. This proves (1).

(2) Foralldistinct v, v’ € V(G)\ E(H), if v, v’ are of ij-type and i’ j’-type respectively, then v, v are strongly
adjacent if {i, jY N {i’, j'} # @, and otherwise v, v’ are strongly antiadjacent.

For suppose first that hy,hj are adjacent in H, and let H' be the graph obtained from H by
deleting the edge fy; and adding a new edge v’ with ends hy,hy. Then E(H’) € V(G), and the
subtrigraph induced on E(H’) is a line trigraph of H’. By (1) applied to v and H’, there exist a,b
with 1 <a <b <5 such that v is of ab-type with respect to H’; that is, for 1 <c <d <5 with
(c,d) # (i’, j'), v is strongly adjacent to f.4 if and only if {a,b} N {c,d} # &, and otherwise v is
strongly antiadjacent to f.4; and v is strongly adjacent to v’ if and only if {a,b} N {i’, j'} # @, and
otherwise v, v’ are strongly antiadjacent. We claim that {a, b} = {i, j}. There is a cycle C of H with
length five, not using the edge fy;. Consequently there are two vertices x1, Xz € {hq, hp, hj, hj} such
that each of x1, xp is adjacent in C to a vertex not in {hg, hp, h;, hj}. Let f be an edge of C with ends
x1 and some vertex not in {hg, hp, h;, h;}. Since v has ij-type with respect to H, it follows that v, f
are strongly adjacent in G if and only if x; € {h;, hj}. But also, since v has ab-type with respect to
H’, and the graphs H, H’ differ only by exchange of the edges fy y,v’, and these edges are differ-
ent from f, it follows that v, f are strongly adjacent in G if and only if x; € {hg, hp}. Consequently
x1 € {h;, hj} if and only if x1 € {hq, hp}; but xq € {hg, hp, h;, hj}, and so x; € {hq, hp} N {h;, hj}. The
same holds for x,, and so {i, j} = {a, b} as claimed. But we saw that v is strongly adjacent to v’ if
and only if {a, b} N {i’, j'} # @, and otherwise v, v are strongly antiadjacent; and so in this case (2)
holds.

We may therefore assume that hy, hj are nonadjacent in H, and similarly h;, h; are nonadjacent
in H. Thus (i, j), (', j/) € {(1,3), (2,4)}, and we may assume from the symmetry that (i’, j") = (1, 3).
If also (i, j) = (1, 3), then v, v/ are strongly adjacent since {v, v/, f5} is not a triad. If (i, j) = (2,4)
then v, v’ are strongly antiadjacent since otherwise {V’, f12, f25. fas. f34, v} induces a 5-wheel. This
proves (2).

From (2) it follows that if v € V(G) \ E(H) has ij-type, then h;, h; are nonadjacent in H, since oth-
erwise v, fi; would be twins; and so every vertex in V(G) \ E(H) has 13-type or 24-type. Moreover,
any two vertices of the same type are twins, so there is at most one of each type, and it follows that
G is a line trigraph of a subgraph of Ks. This proves 2.2. O

Proof of 2.1. If V(G) is expressible as the union of two strong cliques, then since G is slim it follows
that |V (G)| < 2 and the theorem holds. Thus we may assume that G is not the union of two strong
cliques, and so G contains an anticycle of odd length. Choose n minimum such that n is odd and
there is an anticycle of length n. Since there is no triad it follows that n > 5. From the minimality of
n we have:

(1) Let vi-v-----vp-Vvq be an anticycle of length n. Then for 1 <i < j <n, v; and v; are strongly adjacent
unless j —i=1or (i, j) = (1,n).
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(2) Let vi-v-----vy—Vvq be an anticycle C of length n. For every vertex v € V (G), either v is antiadjacent
to a unique vertex of C, or there are exactly two vertices in C antiadjacent to v (and different from v), say
vj, vj; and in this case either j=i4+2modn or j=i—2 modn.

The claim is clear if v € V(C), so we assume that v ¢ V(C). Let I be the set of i € {1,...,n} such
that v, v; are antiadjacent. Since v is not a centre for the odd anticycle, it follows that I # ¢, and we
may assume that 1 € I. If I = {1} then the claim holds, so we assume that there exists i € I\ {1}. Now

one of v-vi-----v;-Vv, V-v;=Vj;1—-----Vp—v1-V is an odd anticycle, and from the choice of n it has
length at least n; and so either i is even and i +1>n, or i is odd and n — i + 3 > n. Consequently
ie{3,n—1},andso I C{1,3,n—1}.1f3,n—1 €, then v-v3-v4-----v,_1-V is an odd anticycle of

length n — 2, which is impossible; so I = {1, 3} or I = {1,n — 1}. This proves (2).

(3) Let vi-va—-----vy—Vvq be an anticycle of length n. There do not exist up,us € V(G) \ {v1,..., vy} such
that vi-uy-u3-v4-----vy-v1 is an odd anticycle and the pairs uv3 and vous are adjacent.

For suppose that such uj, u3 exist. Let us say a square is a set {a, b, c,d} of four distinct vertices,
such that

e a,b are antiadjacent to vi and strongly complete to {v4, vs,..., vy},
e c,d are antiadjacent to v4 and strongly complete to {vs,..., vn, V1},
e the pairs bc, ad are adjacent, and ac, bd are antiadjacent.

Since {a, b, v1} is not a triad, it follows that a,b are strongly adjacent, and similarly so are c,d.
(We follow the convention that when we list the elements of a square, the element written first
corresponds to a in the conditions above, and so on.)

Thus {uy, v, us, v3} is a square. Consequently we may choose disjoint sets A, B with |A|, |B| > 2,
such that

A is anticomplete to v; and strongly complete to {v4, vs,..., Vp},

B is anticomplete to v4 and strongly complete to {vs,..., vu, v1},

for every partition of A or B into two nonempty subsets, there is a square included in AU B that
has nonempty intersection with both subsets, and

e subject to these conditions A U B is maximal.

Since there is no triad, it follows that A, B are strong cliques. Since (A, B) is not a W-join, we may
assume from the symmetry that there exists v € V(G)\ (AUB) with a neighbour and an antineighbour
in A; and since |A| > 2 we may partition A into two nonempty subsets, the first only containing
neighbours of v, and the second only containing antineighbours. Consequently we may choose a
square {a, b, c,d} such that v,a are antiadjacent and v, b are adjacent. Since {v,a,c} is not a triad
it follows that v, ¢ are strongly adjacent. Let C be the anticycle vi-a-c-v4-----v,-v1, and let C’ be
the anticycle v{-b-d-v4-----v,-vq. Since b is not a centre for C, it follows that vq,b are strongly
antiadjacent, and so v # vy. By (1), the only vertices in V(C) \ {a} antiadjacent to a are v, c, and
v # ¢ by hypothesis, so v ¢ V(C), and therefore v ¢ V (C’).

Suppose that d, v are antiadjacent. Since v-a-vi-b-d-v is an anticycle of odd length, it follows
that n = 5. By (2) applied to C and to C/, it follows that v is strongly adjacent to vq,vg4. If v is
antiadjacent to vs then {b, v, vq,d, vs,c} induces a 5-wheel; and if v is adjacent to vs, then the
subtrigraph induced on {vq,d,a, v4,c, vs,b, v} satisfies the hypotheses of 2.2, and so G is a line
trigraph of a subgraph of K5 and the theorem holds. Thus we may assume that d, v are strongly
adjacent.

Let M be the set of antineighbours of v in V(C). Since a € M, (2) implies that M is one of
{a}, {a, vy}, {a, v4}. If M = {a} then v is a centre for C’, which is impossible. If M = {a, v,,}, then
v-a-c-v4-----vy-v is an odd anticycle with centre b, which is impossible. Thus M = {a, v4}, and
so {a,b,v,d} is a square. But then we can add v to B, contrary to the maximality of A U B. This
proves (3).
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For the remainder of the proof, let us fix an anticycle C of length n (we recall that n was chosen
earlier), and it is convenient to number its vertices using even subscripts c», 4, ..., C2y, and not in
the usual order; we number the vertices (so that consecutive vertices are antiadjacent) as

Cn+1-C2—Cn43-C4— - =C2n—2—Cpn—-1-C2n—Cn+1.

Thus for 1 <i < j<2n with i, j even, ¢; and c; are antiadjacent if and only if j —i=n—1 or
j—i=n+1 mod 2n. (We read all subscripts modulo 2n through the remainder of this proof.) For
1 <i<2n with i even, let A; be the set of all vertices antiadjacent to both cjip_1,Citn+1 (and
therefore strongly adjacent to every other vertex of C, by (2)); and for 1 <i < 2n with i odd, let A;
be the set of all vertices antiadjacent to cj;, and strongly adjacent to every other vertex of C. Thus

ci € A; for 1 <i<2n with i even; and the sets Aq,..., Ay, are pairwise disjoint, and have union
V(G) by (2). Moreover, each A; is a strong clique, since there is no triad in G. (The reader may find
it helpful to visualize the sets A1, ..., Ay, arranged in a circle in the order Aq, ..., Agy; our goal is to

refine this circular order by ordering the members of each set A; to obtain a representation of G as a
circular interval trigraph.)

(4) For 1 <i, j<2nwithi# j,ifu e A; and v € A; are antiadjacent then j —iisoneofn—2,n—1,n,
n+1,n+2.

To see this, suppose first that one of i, j is even; say i =2. Now C has vertices

Cn41—-C2—Cn43—C4—---—C2n—2—Cn—1-C2n—Cn41

in order, and so

Cny1-U-Cn43—C4—- -+ —Con—2—-Cn—1-C2n—Cn41

is also an anticycle of length n, say C’. Since u, v are antiadjacent, (2) tells us that the set of an-
tineighbours of v in C’ is one of {u, ¢y}, {u}, {u, c4}. Consequently the set of antineighbours of v in
C is one of

@, Acan}, {ca2,con}, {c2}, {ca,ca}, {ca}

The first is impossible by (2), and the others imply that v belongs to A;, Ant+1, An+2, An+3, Antd,
respectively. Thus the claim holds if i is even.

We may therefore assume that i is odd, and similarly j is odd. We may assume that i = 1, and
we therefore need to show that j is one of n, n 4+ 2. Suppose not; then from the symmetry we may
assume that j >n+ 3. But then j >n + 4 since j is odd, and

V=Cjn=Cjt+1=Cj41—n—" "+ —Cn—1-C2n—Cp41-U-V
is an odd anticycle of length 2n 4+ 4 — j < n. Thus equality holds, since C is an odd anticycle of
minimum length; and so j =n+ 4. But then
Cnt1-U=-V—C4—Cny5-—---—C2n—2-Cn—1-C2n—Cn41
is an anticycle, and {u, v} is complete to {cz, cp+3}, contrary to (3). This proves (4).
(5) For1 <i<2n,ifu € A then
e u is strongly anticomplete to Anyi,

e u is either strongly complete to A4 or strongly anticomplete to Api+1, and
e u is either strongly complete to A, or strongly anticomplete to Apyi—1.

For suppose first that i is even, say i =n + 1. Suppose that v € Ay, and so v is strongly adjacent
to every vertex of C except c1. Now

U=C2—~Cpy3—C4= - -+ —Con—2~Cp—1—Con-U
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is an anticycle of length n, say C’, and v is strongly adjacent to all its vertices except possibly u.
Since G is quasi-line, v has a strong antineighbour in C’, and hence u, v are strongly antiadjacent.
This proves the first statement when i is even.

Next suppose that u has an antineighbour v € A3 and a neighbour w € A;. Since v € A3 and
therefore is strongly complete to every vertex of C except cy43, it follows that u # cp41. But

Cn41-W—Cny3-C4—---—C2n—2-Cn—1-C2n—Cn+1

is an anticycle of length n, and so is

U=V—=Cn43—C4- - - - =Con—2—Cn—1—Con—UU,

and {u, v} is complete to {w, c;+1}, contrary to (3). This proves the second assertion when i is even.
The third assertion follows from the symmetry.

Now suppose that i is odd, say i = 1. We have already seen that A; is strongly anticomplete to
An+1, so the first assertion holds. For the second, assume that u has an antineighbour v € A;4+3 and
a neighbour w € Ap4y. Since {v, w, cp} is not a triad, v, w are strongly adjacent. But

Cn41-U-V=C4—---—C2n—2—Cn—-1-C2n—Cn41

is an anticycle of length n, and w is a centre for it, a contradiction. This proves the second statement,
and again the third follows by symmetry. This proves (5).

(6) For1 <i<2n,andjef{i+n—2,i+n—1,i+n,i+n+1,i+n+2}, there do not exist distinct a, b € A;
and c,d € Aj such that the pairs ac, bd are antiadjacent and ad, bc are adjacent.

For this is clear if j =i+ n, since A; is strongly anticomplete to A;;, by (5). From the symmetry
we may assume that j=i+n+1 or i +n + 2. Suppose first that i is even, say i =2, and so j €
{n 4+ 3,n 4+ 4}. In both cases c, d are antiadjacent to c4, and so

Cn41-0-C=C4= -+ =Con—2—Cpn—-1-C2n—Cn+1

and

Cnp1-b-d-Ca—- - —Con_2-Cn_1-Con—Cn1

are anticycles of length n, and the pairs ad and bc are adjacent, contrary to (3).

Now suppose that i is odd, say i =1, and therefore j € {n+2,n+ 3}. If j =n + 3 then the same
two anticycles given above still violate (3), so we may assume that j =n+ 2. Let us say a rectangle is
a set {p,q,r,s} of four distinct vertices, such that

® p.ge Ay,
e 1,5€ Apta, and
e the pairs gr, ps are adjacent, and pr, gs are antiadjacent.

By hypothesis there is a rectangle, and so we may choose disjoint sets A, B with |A|, |B| > 2, such
that

e AC Ay, and B C Apyo, and |A, [B| =2,

o for every partition of A or B into two nonempty subsets, there is a rectangle included in AU B
that has nonempty intersection with both subsets, and

e subject to these conditions A U B is maximal.

Since (A, B) is not a W-join, we may assume from the symmetry that there exists v € V(G) \ (AU B)
with a neighbour and an antineighbour in A; and since |A| > 2 we may choose a rectangle {p, q,r, s}
such that v, p are antiadjacent and v, q are adjacent. It follows that v ¢ V (C) (since p, q are strongly
antiadjacent to c¢,+1 and strongly adjacent to all other vertices of C). Since v, p are antiadjacent and
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p € A1, (4) implies that v belongs to one of Ap_1, An, Ant1, Ant2, Ant3. If v e Ap1 UA U Apyg,
then v, cop are antiadjacent, and so

V=p-T—C2—Cn4+3-C4— - —Con—2—-Cpn—1-C2n—V

is an odd anticycle of length n+ 2, and q is a centre for it, a contradiction. Thus v belongs to one of
An+2, Any3, and in particular v, c; are antiadjacent; and therefore v is strongly adjacent to both r,s
since there is no triad. If v € A4 then {p, q, v, s} is a rectangle, and so we may add v to B, contrary
to the maximality of AUB. If v € A;43 then

Cny1—-P-V—-C4—---—C2n—2-Cn-1-C2n—Cn+1

is an anticycle of length n with a centre s, a contradiction. This proves (6).

(7) For 1 <i < 2n, there do not exist distinct v, w € A; such that some vertex u € Apti—3 U Apyi—1 is adja-
cent to w and antiadjacent to v, and some vertex x € Ap1i+1 U Anyit2 is adjacent to w and antiadjacent
tov.

For suppose that such u,x exist. First suppose that i is even, say i = 2. Thus u € A; U Ap4+1 and
X € Apy3 U Apta, and so

U-V—-X—C4—Cp45-C6— "+ —C2n—2—Cpn—1-C2n-U

is an anticycle of length n with a centre w, a contradiction. Next suppose that i is odd, say i = 1.
Thus u € Ap_1 UA; and x € Ap U Apy3. Since v € A1 and so is strongly adjacent to every vertex of
C except cp41, it follows that u, x ¢ V(C). Hence and

U=V-X—C2—Cn43—C4— - —Con—2-Cp—1-Con—U

is an anticycle of length n + 2 with a centre w, a contradiction. This proves (7).

From (5), (6), (7), for 1 <i < 2n we can order A; as {vi,..., Vg} say, such that for 1 <h < j <k,
every vertex in Apyi_» U Anqi_1 that is adjacent to v; is strongly adjacent to vy, and every vertex in
Anyiy1 U Apqiqp that is adjacent to vy is strongly adjacent to vj. We call this the natural order of A;.
Take a circle X, and 2n disjoint line segments L1, ..., Ly, from X in order. For each i, let us map the
members of A; injectively into L; in their natural order. This gives a representation of G as a circular
interval trigraph. This proves 2.1. O

3. Isolated triads

A triad T in a quasi-line trigraph G is isolated if T is disjoint from every other triad. It follows
that every vertex in V(G) \ T has two strong neighbours and one strong antineighbour in T. In this
section we show:

3.1. Let G be a quasi-line trigraph with an isolated triad T, such that there is no W-join (P, Q) with P, Q <
V(G)\ T. Then G is a circular interval trigraph.

Proof. Let T = {t1, t2, t3} be an isolated triad. For i =1, 2, 3, let C; be the set of all vertices in V(G)\ T
that are strongly antiadjacent to t; and (therefore) strongly adjacent to the other two members of T.
Thus Cq,Cy,C3, T are pairwise disjoint and have union V(G). We observe first that C1, Cy, C3 are
strong cliques; for if say x, y € C; are antiadjacent, then {x, y, t1} is a triad with nonempty intersection
with T, contrary to the hypothesis.

Reading subscripts modulo 3, for x € V(G) \ C; we define N;(x) to be the set of neighbours of x
in C;, and M;(x) to be the set of antineighbours of x in C;.

(1) Fori=1,2,3,ifu, v € C; thenone of Nj11(u) N Mj+1(v), Ni_1(u) N Mj_1(v) = 0.
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For suppose that x € Nj1(u) N Mjy+1(v) and y € N;—_1(u) N M;_1(v). Since {u, v, x, y} is not a claw it
follows that x, y are adjacent. But then {v,ti_1,X, ¥, ti+1,u} induces a 5-wheel, a contradiction. This
proves (1).

(2) Foralldistinct i, j € {1, 2,3}, if u, v € C; are distinct then one of N;(u) " M;(v), N;j(v) "N M;(u) =9.

For we may assume that i =1 and j = 2. Let us say a square is a set {a,b,c,d} of four distinct
vertices, with a,b € C1 and c,d € C;, such that the pairs ac, bd are adjacent, and the pairs ad, bc are
antiadjacent. Suppose that there is a square. Consequently we may choose disjoint sets Aq, Ay with
|A1], |A2] = 2, such that

e A1 C(q, and Ay C (o,

o for every partition of A; or A, into two nonempty subsets, there is a square included in A1 U Ay
that has nonempty intersection with both subsets, and

e subject to these conditions A; U A, is maximal.

Since (A1, A2) is not a W-join (by hypothesis), we may assume (by the symmetry between C1, C3)
that there exists z € V(G)\ (A1 UA3) with a neighbour and an antineighbour in C1. Hence z # t1, ta, t3.
Since |A1| > 1, we may choose a square {a, b, ¢, d} such that z is adjacent to a and antiadjacent to b.
Since z has an antineighbour in C; it follows that z ¢ C1; and since ¢ € Ny(a) " M3 (b), (1) implies that
z ¢ N3(a) N M3(b). Consequently z € Co, and so {a, b, z,d} is a square; but then we can add z to A,
contrary to the maximality of A; U A. This proves that there is no square.

Now to complete the proof of (2), suppose that u, v € Cq are distinct, and x € Na(u) N M3(v) and
y € Na(v) N M3 (u). Since {u, v, x, y} is not a square (because there are no squares), it follows that
x=1y. Thus x € Na(u) N M3 (u), so x is semiadjacent to u, and similarly x is semiadjacent to v, which
is impossible. This proves (2).

For i =1,2,3, if u,v € C; we write u — v if either M 1(u) N Njy1(v) # @, or Ni_1(u) N
Mi_1(v) # 0.

(3) If u, v € C; then not both u — v and v — u. Moreover, if u,v,w € Cj, and u — v and v — w, then
u— w.

For suppose that u — v. We may assume that i =1, and since u — v we may assume from the
symmetry between C,C3 that My(u) N Na(v) # @. By (1) M3(u) N N3(v) =, and by (2) Ma(v) N
N> (u) = @. Consequently v — u. This proves the first claim.

For the second, suppose that u,v,w € C; and u — v and v — w. From the symmetry we may
assume that there exists x € M (u) N N(v). Since w — v it follows that x ¢ M(w) N N(v), and so
x, w are adjacent. Hence x € M (u) N Na(w) and so u — w as required. This proves (3).

From (3) there is a linear order (say u1, ..., uq) of the members of C; such that for 1 <i < j<a,
every vertex in C3 adjacent to u; is strongly adjacent to u;, and every vertex in C; adjacent to u; is
strongly adjacent to u;. Choose orders vi,...,vp of C2 and wq,..., wc of C3 similarly. Then if we

place the vertices of G in a circle, in the order
t2, U1, ..., Ug, t3, V1, ..o, Vp, b1, W1, .o, W, (£2)

this gives a representation of G as a circular interval trigraph. This proves 3.1. O

4. Antiprismatic trigraphs

If G is a trigraph, we say X C V(G) is a fang if |X| =4 and at most one pair of vertices in X are
strongly adjacent. We say G is antiprismatic if no subset of V(G) is a fang or claw. Next we study
which antiprismatic trigraphs are quasi-line. Trigraphs with no triad are antiprismatic, and our next
results extend 2.1. In [2,3] we gave a structure theorem describing all antiprismatic trigraphs; but it
turns out that so few antiprismatic trigraphs are quasi-line that it is easier not to use that structure
theorem, and to prove what we need here from first principles.
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Let H be a trigraph with seven vertices v1, ..., v7 and the following adjacencies:

e the pairs v1Vy, VaV3, V3Vy4, V4Vs, V5Ve, V1 Vg, V1 V7, V3V7, V4V7, VgV7 are strongly adjacent,
e V1, v3 are semiadjacent, and the adjacency between v4, vg is unspecified, and
e all other pairs are strongly antiadjacent.

We call such a trigraph H a trigraph of H7-type. Such trigraphs are antiprismatic quasi-line trigraphs,
but not line trigraphs (because of the semiadjacent pair v1, v3), and not circular interval trigraphs;
and they will be exceptional in some of the theorems that follow.

We will prove the following:

4.1. Let G be a slim antiprismatic quasi-line trigraph. Then either G is a line trigraph of a subgraph of Kg, or G
is a trigraph of H7-type, or G is a circular interval trigraph.

The proof needs several lemmas. We begin with the following, the proof of which is clear:

4.2.If G is antiprismatic and T is a triad of G and v € V(G) \ T then v is strongly adjacent to two members of
T and strongly antiadjacent to the third.

4.3. Let H be a graph with six vertices hq, ..., hg and eight edges, such that (reading subscripts modulo 6)
hi, hiy1 are adjacent for 1 < i < 6, and for some i, h;, h;;3 are adjacent, and one of hj11, hiy; is adjacent
to one of hit4, hiys. Let G be an antiprismatic quasi-line trigraph, not admitting twins, and containing a line
trigraph of H as an induced subtrigraph. Then G is a line trigraph of a subgraph of Kg.

Proof. For each adjacent pair h;, h; of vertices of H with i < j, let f;; be the edge of H joining h;, h;.
Thus H has eight edges, including f12, f23, f34, fas, f56, fig and two others that we do not specify
yet in order to preserve the symmetry. Moreover, E(H) C V(G), and for all e, f € E(H),

e if e, f have a common end in H then they are adjacent in G, and if they have a common end of
degree at least three in H, then they are strongly adjacent in G,
e if e, f have no common end in H then they are strongly antiadjacent in G.

Let C be the cycle of H formed by the vertices hi-hy-----hg-hy in order. For each pair i, j €
{1,...,6} with i < j, we say that a vertex v € V(G) \ E(C) is of ij-type if v is strongly adjacent to
each edge f of C that is incident with h; or hj, and strongly antiadjacent to every other edge of C.

(1) For every vertex v € V(G) \ E(C), there exist distinct i, j such that v is of ij-type and h;, hj are not
adjacent in C.

For by 4.2 it follows that v is strongly adjacent to two of f12, f34, f56, and strongly antiadjacent to
the third. We may therefore assume that v is strongly adjacent to f1,, f34 and strongly antiadjacent
to fse. Similarly v is strongly adjacent to two of f»3, fa5, f16 and strongly antiadjacent to the third.
If v is adjacent to fo3, f45 then v is of type 24; if it is adjacent to fs5, f1 then it is of type 14; and
if it is adjacent to fig, f23 then it is of type 13. This proves (1).

(2) If v, v/ € V(G) \ E(C), with types ij and 14 respectively, then
o if{i, j}N{1,4} £, then v, v’ are strongly adjacent, and
o if{i, j}N{1,4} =, then v, v’ are strongly antiadjacent.

For from the symmetry we may assume that (i, j) is one of (1, 3), (1,4), (2,5), (2, 6). In the first
two cases it follows that v, v/ are strongly adjacent since otherwise {fig, v, V', f56} is a claw. In the
last two cases it follows that v, v/ are strongly antiadjacent since otherwise {v’, v, fo3, fs¢} is a claw.
This proves (2).
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(3) If v, v/ € V(G) \ E(C), with types ij and i’ j’ respectively, and {i, j} N {i’, j'} # @, then v, v’ are strongly
adjacent.

For by (2) we may assume that (i’, j') = (1, 3) and (i, j) is one of (1, 3), (1, 5). If (i, j) = (1, 3) then
v, v’ are strongly adjacent since otherwise {fig, v, V', fs6} is a claw. Suppose then that (i, j) = (1,5)
and v, v’ are antiadjacent. By hypothesis there exists w € E(H) \ E(C) of type 14,25 or 36. If w
is of type 14, then w is adjacent to both v, v’ by (2), and so {v, fss, f34, v/, f12, w} induces a 5-
wheel, a contradiction. From the symmetry we may therefore assume that w has type 25, and hence
by (2), w is adjacent to v and antiadjacent to v’. But then {v, w, fi3, V', f16, f12} induces a 5-wheel,
a contradiction. This proves (3).

(4) If v, v/ € V(G) \ E(C), with types ij and i’ j’ respectively, then
o if{i, j}N{i’, j} # @, then v, v’ are strongly adjacent, and
o if{i, jyN{i’, j'} =@, then v, v’ are strongly antiadjacent.

For by (3) we may assume that {i, j} N {i’, j/} =@, and by (2) that (i, j/) = (1, 3). Suppose that
v, v’ are adjacent. If {i, j} = {4, 6} then {f12, f23, f34, Vv, f16, v’} induces a 5-wheel, a contradiction;
so from (2) and the symmetry we may assume that (i, j) = (2, 4). By hypothesis there exists w €
E(H) \ E(C) of type 14,25 or 36. If w is of type 36, then w is adjacent to v’ and antiadjacent to v,
and {w, f34, v, f12, f16, v’} induces a 5-wheel, a contradiction. Thus w is not of type 36, and similarly
it is not of type 25; so w is of type 14. By hypothesis, there is an edge x of H incident with one of
hy, h3 and one of hs, hg. From the symmetry we may assume that x is incident with h,. If x is incident
with hs then it has type 25, which we already saw was impossible. Thus x has type 26. By (3) x is
adjacent to v, and by (2) it is antiadjacent to w. If x is adjacent to v/, then {x, f23, f34, W, f16, v’}
induces a 5-wheel, a contradiction; so x is antiadjacent to v’. But then {v, Vv’ x, fs5} is a claw, a
contradiction. This proves (4).

(5) If v e V(G) \ E(C) is of type ij, then the two edges of C incident with h; in C are strongly adjacent in G.

For from the symmetry we may assume that (i, j) = (1,3) or (1,4); and then fq3, f1g are strongly
adjacent, since {v, f12, f16, f34} is not a claw. This proves (5).

From (4) it follows that every two members of V (G) \ E(C) of the same type are twins; and so all
members of V(G) \ E(C) are of different types, and therefore (5) implies that G is a line trigraph of a
subgraph of Kg. This proves 4.3. O

4.4. Let G be an antiprismatic quasi-line trigraph. Suppose that there are at least two triads, and for some
z € V(G), every triad contains z. Suppose also that there are no twins both different from z, and there is no
W-join (P, Q) with z ¢ P U Q. Then either G is a line trigraph of a subgraph of Kg, or G is of H7-type.

Proof. Let N be the set of strong neighbours of z, and M the set of antineighbours. Let {z, a;, b;}
(1 <i<n) be the triads containing z. By hypothesis, n > 2. Since there is no fang, no two triads have
more than one vertex in common, and so ai, b1, ..., as, by are all distinct. By 4.2, {a;, b;} is strongly
complete to M\ {a;, b;} for 1 <i<n, and z is strongly anticomplete to M.

For all adjacent u, v € {a1, az, by, by}, let D(uv) be the set of members of N adjacent to both u, v.
Since every triad contains z and there is no claw, it follows that every vertex in N is adjacent to
exactly one of aq, by, and to exactly one of ay, by; and so the four sets D(ajaz), D(azby), D(b1b2),
D(byaq) are pairwise disjoint and have union N. Since every triad contains z, it follows that for each
x € M, the set of vertices in N antiadjacent to x is a strong clique. In particular, the four sets

D(ayaz) U D(azb1), D(azb1) U D(b1b2), D(b1by) U D(bzay), D(baar) U D(aiaz)

are strong cliques. Since ({a1, az}, {b1,b2}) is not a W-join, it follows that D(azb1) U D(baay) # 0,
and similarly D(aiay) U D(b1by) # @; and we may assume from the symmetry that there exists dy €
D(ajay) and dy € D(ajby). Thus dq, d; are strongly adjacent.
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Let X = M\ {a1, b1, ay, by}. If some vertex x € X is adjacent to both d1, dp, then {dy, az, b1, b2, d2, X}
induces a 5-wheel, and if some x € X is antiadjacent to both di,d> then {x, ay,d1,d>, by, ay} induces
a 5-wheel, in either case a contradiction. Thus di,d> have complementary neighbour sets in X (and
all their neighbours in X are strong neighbours). Since this holds for all choices of d1, d2, we deduce
that there is a partition Xy, X2 of X such that D(aq, ay) is strongly complete to X; and strongly an-
ticomplete to X3, and vice versa for D(a1b,). By the same argument applied to D(aibz) and D(b1b3)
it follows that D(b1by) is strongly complete to X; and strongly anticomplete to X»; and by the same
argument applied to D(aiaz) and D(azbq) it follows that D(azb1) is strongly complete to X, and
strongly anticomplete to Xj.

We claim that D(ajay) is strongly complete to D(b1b,); for if say p € D(ajay) is antiadjacent to q €
D(b1b1) then {z, p,aq, by, q,d>} induces a 5-wheel, a contradiction. Similarly D(a1b,) is complete to
D(azb1). Thus any two vertices in D(ajay) are twins, and so D(aiay) = {d1}, and similarly D(a1by) =
{d2} and |D(b1b2)|, |D(azb1)| < 1. Since (X1, X2) is not a W-join and there are no twins, it follows that
|X1], |X2] <1; and in particular n < 3 and |V (G)| < 11. Since {b1, by, d>,dq,az,a;} does not induce a
5-wheel it follows that aq, by are strongly antiadjacent.

Suppose that D(b1by) # @, and let D(b1by) = {d3} say. From the symmetry between di,d3 it fol-
lows that ay, by are strongly antiadjacent. We claim that X is strongly anticomplete to X»; for if say
x1 € X7 is adjacent to xp € X3, then {x,, b1,d3,dq,ay,x1} induces a 5-wheel, a contradiction. But then
G is a line trigraph of a subgraph of K as required.

We may therefore assume that D(b1by) =@, and similarly D(azb1) = . Since (X7 U{ax}, Xo U{by})
is not a W-join it follows that X = @. If ap, b, are strongly antiadjacent then G is a line trigraph of a
subgraph of Kg, and if ay, by are semiadjacent then G is of H7-type. This proves 4.4. O

In view of 2.1 and 3.1, the next result immediately implies 4.1, the main result of this section.

4.5. Let G be a slim antiprismatic quasi-line trigraph, such that two triads in G have nonempty intersection.
Then either G is a line trigraph of a subgraph of Kg, or G is of H7-type.

Proof. Let z € V(G) belong to at least two triads, and let {z,a;,b;} (i =1,2) be two such triads.
Thus ay, b1, az, by are distinct, and by 4.2, {ai, b1} is strongly complete to {ay, b,}, and z is strongly
anticomplete to {ai, axz, by, by}.

(1) If some triad is disjoint from {z, a1, az, b1, b} then G is a line trigraph of a subgraph of Kg.

For suppose that {a, b, c} is a triad disjoint from {z, a1, az, b1, b,}. By 4.2 applied to {a, b, c} and
z, it follows that z is strongly adjacent to two of a, b, c, say a, b, and strongly antiadjacent to c. For
i=1,2, by 4.2 applied to {z,a;,b;} and c, it follows that c is strongly adjacent to a;, b;; and by
4.2 applied to {z,a;, b;} and a we deduce that a is strongly adjacent to one of a;, b; and strongly
antiadjacent to the other, say a is strongly adjacent to a; and strongly antiadjacent to b;. For i =1, 2,
since {aj,a, b, c} is not a claw it follows that a;, b are strongly antiadjacent; and so by 4.2 applied to
{z,a;, b;} and b it follows that b is strongly adjacent to b;.

Since ({a1, az}, {b1, ba2}) is not a W-join, we may assume that some vertex x say is adjacent to a;
and antiadjacent to ay. Thus x ¢ {z, a1, az, b1, bz, a, b}. By 4.2 applied to {z, ay, by} and x it follows that
x is strongly adjacent to z, by, and strongly antiadjacent to ay; and by 4.2 applied to {z,a;, b1} and x,
we deduce that x is strongly adjacent to a; and strongly antiadjacent to b;. Now x is strongly adjacent
to two of a, b, ¢ and strongly antiadjacent to the third. If x is antiadjacent to c, then {x, by, c, a2, a, a;}
induces a 5-wheel, a contradiction; so from the symmetry we may assume that x is strongly antiad-
jacent to a say, and strongly adjacent to b, c. Thus {x,a, b1} is a triad, and so the pairs a;bq, ab, ac
are strongly antiadjacent, by 4.2. If b, ¢ are adjacent then {ai,ay, by, b, x, ¢} induces a 5-wheel, and
if ap, by are adjacent then {ajy,ay, b1,b, x, by} induces a 5-wheel, in either case a contradiction; so
bc, azby are both strongly antiadjacent. But then the subtrigraph induced on {a, z, x, by, b1, az, a1, b}
satisfies the hypotheses of 4.3 and so G is a line trigraph of a subgraph of K. This proves (1).
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By 4.4, we may assume that there is a triad T not containing z, and by (1) we may assume that
b, € T say. Thus z is strongly adjacent to the other two members of T, and in particular aq,az, by ¢ T.
Let T = {by,as, b3} say. By 4.2 we may assume that the pairs ajas, bibs are strongly adjacent, and
aibs, azbq are strongly antiadjacent. Also, ay is strongly adjacent to as, b3, and by three applications
of 4.2 it follows that the pairs baas, babs, azb, are strongly antiadjacent. Hence all pairs of vertices
within {aq, b1, az, by, as, bz, z} are either strongly adjacent or strongly antiadjacent, except possibly
for the pairs aib; and asbs, each of which is either semiadjacent or strongly antiadjacent. Let W =
{ai,b1,az,by,a3,b3,z}, and let M = V(G) \ W. Because W is a union of triads, 4.2 implies that no
vertex in M is semiadjacent to a member of W.

(2) If some vertex is adjacent to both of z, by, then G is a line trigraph of a subgraph of Kg.

For suppose that some x is adjacent to both z, b,. Consequently x € M, and so x is not semiadjacent
to any member of W. By 4.2, x is antiadjacent to ay. Suppose that x is adjacent to both by, as (and
hence antiadjacent to a1, b3, by two applications of 4.2). From two applications of 4.2 to {x, a1, b3} we
deduce that a;b; and asbs are both strongly antiadjacent pairs; but then the subtrigraph induced on
W U {x} satisfies the hypotheses of 4.3 and so G is a line trigraph of a subgraph of Kg. Thus we may
assume that x is antiadjacent to at least one of bi, as, and to at least one of aj, b3 (by the symmetry
taking (ai, as) to (b1, b3) and fixing each of ay, by, X, z). Since x is antiadjacent to exactly one of aq, bq
and exactly one of as, b3, we may assume (from the same symmetry) that x is antiadjacent to aq, as
and adjacent to bq, bs. But then the subtrigraph induced on W U {x} satisfies the hypotheses of 4.3
and therefore G is a line trigraph of a subgraph of K. This proves (2).

For all w € W, let M(w) be the set of all vertices in M that are antiadjacent (and therefore strongly
antiadjacent) to w. Because of the triad {z, ay, b2}, every vertex different from z, ay, b, is antiadjacent
to exactly one of z,ay,b,. By (2), we may therefore assume that M(ay) = @, and M(by), M(z) are
disjoint and have union M. Every vertex in M \ M(z) is antiadjacent to exactly one of aj, b, and
every vertex in M(z) is adjacent to both ai, b1; so M(ay), M(by) are disjoint and have union M(b3),
and similarly M(a3), M(b3) are disjoint and have union M(z). Thus in summary, M is the union of
the four disjoint sets M(a1), M(b1), M(a3), M(b3); the first two have union M(bz) and the last two
have union M(z). If M(by) is not a strong clique, then there is a triad T included in M(by) U {b,}
containing by, and the triad {z,aq, by} is disjoint from both T and the triad {z, ay, b2}; so there are
three triads, exactly one pair of which have nonempty intersection, and the theorem holds by (1). We
may therefore assume that M(b,) is a strong clique, and in particular M(ay) is strongly complete to
M(b1). Similarly we may assume that M(as3) is strongly complete to M(b3). If p € M(a3) is adjacent
to g € M(by) then {p,ay,as, z, bs, q} induces a 5-wheel, a contradiction; so M(a3), M(by) are strongly
anticomplete, and similarly M(a1), M(b3) are strongly anticomplete. If some p € M(a3) is antiadjacent
to some q € M(ay), then {p, b1, q, as,ay,ay} induces a 5-wheel, a contradiction; so M(as3) is strongly
complete to M(ay) and similarly M(b3) is strongly complete to M(b1). Since (M(ay) U {b3}, M(b1) U
{as}) is not a W-join and G does not admit twins, it follows that M(ai) = M(by) = @, and similarly
M(az) = M(b3) = @. If the pairs a;b; and asbs are both strongly antiadjacent, then G is a line trigraph
of a subgraph of Kg, and otherwise G is of H;-type. This proves 4.5, and hence completes the proof
of 41. O

5. Spots and stripes

Up to now we have been studying antiprismatic quasi-line trigraphs. This was a digression, and
somewhat out of order, since the antiprismatic case is just one of several; but the material was self-
contained and we thought it best to treat it separately. Now we return to the main thrust of the
paper, proving 1.1. Much of 1.1 follows from two theorems of [5], as we will explain, but first, some
more definitions.

Suppose that V1, V, is a partition of V(G) such that Vq, V, are nonempty and Vq is strongly
anticomplete to V. We call the pair (V1, V3) a 0-join in G. Thus, G admits a 0-join if and only if it
is not connected.
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Next, suppose that Vq, V, is a partition of V(G), and for i =1, 2 there is a subset A; C V; such
that:

e Ai,Vi\Aj#@ fori=1,2;
e A1 U A, is a strong clique; and
e V1 \ A1 is strongly anticomplete to V3, and V is strongly anticomplete to V3 \ As.

In these circumstances, we say that (Vq, V) is a 1-join. If we replace the first condition above by
e V4, V, are not strongly stable,

we call (Vq, V3) a pseudo-1-join. If G is connected then every 1-join is a pseudo-1-join.
Next, suppose that Vg, V1, V5 is a partition of V(G) (where Vo may be empty), and for i =1,2
there are disjoint subsets C;, D; of V; satisfying the following:

e fori=1,2, Cj, D; and V;\ (C; U D;) are all nonempty;

e VoUC1UC; and VoU D1 U Dy are strong cliques; and Vg is strongly anticomplete to V;\ (C; UD;)
fori=1,2; and

e for all vi € V7 and v, € V,, either vy is strongly antiadjacent to v, or v{ € C; and v, € Cy, or
v1 € D1 and vy € Ds.

We call the triple (Vo, V1, V2) a generalized 2-join, and if Vo =@ we call the pair (V1, V) a 2-join. If
we replace the first condition above by

e V4, V, are not strongly stable,

we call (Vg, V1, V2) a pseudo-2-join.
Finally, suppose that Vq, V5, V3, V4 is a partition of V (G), satisfying the following:

Vi #40, and VU Vy, V1 U V3 are strong cliques, and V1 is strongly anticomplete to Vy4;

either |V1| > 2, or V5 U V3 is not a strong clique;

V5 U V3 U Vy is not strongly stable; and

if vo € Vo and v3 € V3 are adjacent then they have the same neighbours in V4 and neither of
them is semiadjacent to any member of V4.

In these circumstances we call (V1, V3, V3, V4) a biclique.

A vertex v of a trigraph is simplicial if N U {v} is a strong clique, where N is the set of all neigh-
bours of v. Let us say that (G, Z) is a stripe if G is a trigraph, and Z € V(G) is a set of simplicial
vertices, such that Z is strongly stable and no vertex has two neighbours in Z. (In [5], we also in-
cluded the condition that G is claw-free, but let us omit that now.) We call the members of Z the
ends of the stripe.

A stripe (J, Z) is said to be unbreakable if

J does not admit a 0-join, a pseudo-1-join, a pseudo-2-join or a biclique,
there are no twins u,veV(J)\ Z,

there is no W-join (A, B) in J such that ZNA,ZNB =4, and

Z is the set of all vertices that are simplicial in J.

In view of Theorem 9.1 of [5], in order to prove 1.1 it suffices to show the following:

5.1. For every unbreakable stripe (J, Z), if ] is quasi-line then either

e |Z|=2and (], Z) is a linear interval stripe, or
e |Z|=1and (J, Z) is a bubble, or
e Z = and ] is a circular interval trigraph.
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We prove this in the following sections. We will eventually need a number of further definitions,

and it is convenient to insert them at this point. There are eight classes of trigraphs described in [5],
called Sy, ...,S7. To reduce the amount of material we have to copy over from [5], we leave the
reader to check that

52.Fori=1,2,4,if G € S;, then G contains a 5-wheel, and therefore is not quasi-line.

501
832
351

SG:

571

Here are the definitions of the classes S; for i =0, 3,5,6,7:

This is the class of line trigraphs of graphs.

This is the class of long circular interval trigraphs.

Let n > 2. Construct a trigraph H as follows. Its vertex set is the disjoint union of four sets
A,B,C and {dqy,...,ds}, where |A| =|B|=|C|=n, say A=1{ai,...,an}, B={by,...,by} and
C={c1,...,cp}. Let XCT AUBUC with [ XN A|, |XNB||XNC|< 1. Adjacency is as follows:
A, B, C are strong cliques; for 1 <1, j <n, a;,bj are adjacent if and only if i = j, and ¢; is strongly
adjacent to a; if and only if i # j, and c; is strongly adjacent to b; if and only if i # j. Moreover

- a; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then b; € X,
- b; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then a; € X,
- a; is semiadjacent to b; for at most one value of i € {1,...,n}, and if so then c¢; € X,

- no two of A\ X, B\ X, C\ X are strongly complete to each other.

Also, dq is strongly AU B U C-complete; d, is strongly complete to A U B, and either semiadja-
cent or strongly adjacent to di; d3 is strongly complete to A U {d2}; d4 is strongly complete to
B U {d»,ds}; ds is strongly adjacent to ds,d4; and all other pairs are strongly antiadjacent. Let
the trigraph just constructed be H, and let G = H|(V(H) \ X). Then S5 is the class of all such
trigraphs G.

Let n > 2. Construct a trigraph J as follows. Its vertex set is the disjoint union of three sets
A’,B’,C’, where |A'| =|B'|=n+1 and |C’| =n, say A’ ={ag,ai,...,a,}, B = {bo,b1,...,bs}
and C' ={cy,...,cn}. Adjacency is as follows. A’, B’,C’ are strong cliques. For 0 < i, j < n with
(i, j) #(0,0), let a;,b; be adjacent if and only if i = j, and for 1 <i<n and 0 < j<n let ¢, qa;
be antiadjacent if and only if i = j, and let ¢;,b; be antiadjacent if and only if i = j. (There
was an error in the definition of Sg given in [4,5], corrected here.) ag, bp may be semiadjacent
or strongly antiadjacent. All other pairs not specified so far are strongly antiadjacent. Now let
X CA'UB'UC\ {ag, bg} with |C"\ X| > 2. Let all adjacent pairs be strongly adjacent except:

- a; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then b; € X,
- b; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then a; € X,
- a; is semiadjacent to b; for at most one value of i € {1, ...,n}, and if so then ¢; € X.

Let G = J \ X. We say that G is near-antiprismatic. Let Sg be the class of all near-antiprismatic
trigraphs.
This is the class of all antiprismatic trigraphs.

For quasi-line trigraphs, we can also eliminate Ss, because of the following.

5.3.If G € S5, then G contains a 5-wheel, and therefore is not quasi-line.

Proof. Let A,B,C,dq,...,ds5,n, X etc. be as in the definition of S5. Let 1 <1i,j<n with i #j. If
aj,bj ¢ X, then the subtrigraph induced on {ds,a;,d1,bj,ds,d>} is a 5-wheel, a contradiction. Thus
X contains one of a;,b;, and similarly one of aj, b;. Since this holds for all i, j, and since n > 2 and
[XNA|, |XNB| <1, it follows that n =2, and we may assume that a,, b, € X. Since A\ X, B\ X are
not strongly complete to each other, it follows that a; is semiadjacent to by, and so c; € X; but then
A\ X is strongly complete to C \ X, a contradiction. This proves 5.3. 0O
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6. Two-ended stripes

There are fifteen types of stripes described in [5], called Zq,..., Z15 (and those we need are
defined below). The following is a consequence of the results of [5].

6.1. Let (J, Z) be an unbreakable claw-free stripe with |Z| > 1. Then (J, Z) € Z1U---U Z15 (and in particular
1Z] <2).

Proof. If V(J) is the union of two strong cliques then Theorem 10.2 of [5] implies that (J, Z) €
Z1U---U Z15 as required, so we assume not. By Theorem 10.5 of [5], either J is a thickening of
an “indecomposable” member of S; for some i € {1,...,7}, or J admits a “hex-join”. (The meanings
of the two terms in quotes are not needed at this point.) In the first case the claim follows from
Theorem 12.2 of [5]. In the second case Theorem 13.1 of [5] implies that |Z| < 2, and the claim
follows from Theorems 13.2 and 13.3 of [5]. This proves 6.1. O

We leave the reader to verify the next result, which is easy.

6.2.Fori=4,5,7,if (J, Z) € Z; then ] contains a 5-wheel, and therefore is not quasi-line.
The main result of this section is the following, which is the first part of 5.1.

6.3. Every unbreakable quasi-line stripe with at least two ends is a linear interval stripe.

Proof. Let (G,Z) be an unbreakable quasi-line stripe with |Z| > 2. By 6.1 it follows that that
(G,Z) € Z; for some i€ {1,...,15}, and therefore 1 <i < 5, since the other classes contain only
stripes with one simplicial vertex. By 6.2 it follows that 1 <i < 3. Here are the definitions of these
three classes:

Z1: This is the class of linear interval stripes.

Zy: Let G € Sg, let ag, by etc. be as in the definition of Sg, with ag, by strongly antiadjacent, and let
Z ={ag, bp}. Then Z, is the class of all such (G, 2).

Z3: Let H be a graph, and let hy-hy-hs-h4-hs be the vertices of a path of H in order, such that
hq, hs both have degree one in H, and every edge of H is incident with one of hy, h3, hs. Let G
be obtained from a line trigraph of H by making the edges hyhs and h3hs of H (vertices of G)
either semiadjacent or strongly antiadjacent to each other in G. Let Z = {h1h3, h4hs}. Then Z; is
the class of all such (G, Z).

Consequently we may assume that (G, Z) € Z, U Z3. Suppose first that (G, Z) € Z,, and let
ap, bp,n, X etc. be as in the definition of Sg, with ag, by strongly antiadjacent, where Z = {ag, bo}.
We may assume that for 1 <i < n, at most two of a;, b;, ¢c; € X.

Suppose that | X N A| > 2, and ay,a; € X say. If X also contains by, by, then it contains neither of
c1, C2, and they are twins, a contradiction since (G, Z) is unbreakable. Thus one of by, b2 is not in X,
and similarly one of cq, ¢y is not in X. Since for i = 1,2 one of b;, c; is not in X, we may assume
that by, c2 ¢ X. Since ({b1, b2} \ X, {c1,c2} \ X) is not a W-join (because (G, Z) is unbreakable), it
follows that by, cq; € X. Since ag has a neighbour it follows that n > 3. Suppose that n = 3. Then
az ¢ X, and c3 ¢ X (because |C \ X| > 2 from the definition of Sg), and since ({as}, {cz,c3}) is not a
W-join it follows that bs ¢ X, and so c3, a3 are strongly antiadjacent. But then c3 is simplicial in G,
contradicting that (G, Z) is unbreakable. Thus n > 4. If a3 ¢ X, then by the same argument with ay, a3
exchanged, it follows that X contains exactly one of c1, c3, and similarly exactly one of c3, c3, which is
impossible. Thus a3 ¢ X, and similarly as, ..., a, ¢ X. Since as,as ¢ X, the same argument (with A, B
exchanged) implies that one of b3, bs ¢ X, say bs ¢ X. If also c3 ¢ X, then the subtrigraph induced
on {as,as,cs3, b1, b3, cy} induces a 5-wheel, a contradiction; so c3 € X. But then ({b1, b3}, {a3}) is a
W-join, a contradiction. Thus |[X N A| <1, and similarly | X N B| < 1.
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Now suppose that | X N C| > 2, say c1,c2 € X. Not both aj,a; € X, and not both by, by, and yet
({a1,a2}\ X, {b1, b2} \ X) is not a W-join; so X contains exactly one of a1, az, and exactly one of by, b;.
Since it contains at most one of a;,b; for i = 1,2, we may assume that aj, by ¢ X, and ap,b; € X.
Since |C \ X| > 2 it follows that n > 4, and we may assume that c3, c4 ¢ X. But also X contains none
of as, a4, b3, by, and {aq, as, b3, by, c3, ¢4} induces a 5-wheel, a contradiction. Thus | X NC| < 1, and so
[X] <3.

Suppose that n > 4. Since |X| < 3, we may assume that aj, by, c1 ¢ X. Also, since X contains at
most one member of each of the three sets {ay,as,as}, {b2, b3, bs}, {c2,C3,c4}, and at most two
of each of the sets {aj, b, c;} for i =2,3,4, we may assume that a, b3, cq4 ¢ X. But then induces
{ay,az,c1,bs, by, c4} a 5-wheel, a contradiction. Thus n < 3.

Now n > 2 since |C \ X| > 2; suppose that n = 2. Thus cy,c2 ¢ X. Thus {cq,a2,b2} \ X and
{c2,a1,b1} \ X are strong cliques. If also ¢; is strongly anticomplete to {a;, b;} \ X for i =1, 2, then
@, {c1,c2}, AU B\ X) is a pseudo-2-join, a contradiction. Thus we may assume that a; ¢ X, and
c1,aq are semiadjacent, and so by € X. If a, € X then (G, Z) is a linear interval stripe (in the order
ap, aq, C2,C1, b2, bo), so we may assume that a, ¢ X. Since G is connected and therefore by has a
neighbour, it follows that by ¢ X. But then (B, AUC) is a 1-join, a contradiction. Thus n = 3.

Suppose that X has nonempty intersection with {a;, b;, ¢;} for i =1,2,3. Then we may assume
that aq, by, c3 € X; but then (G, Z) is a linear interval stripe, with the order

ao, az, as, ci, ¢z, b3, by, bo,

as required. Thus we may assume that ay, b1, c1 ¢ X. Suppose that as, c3 ¢ X and as, c3 are semiadja-
cent, and so bz € X; thus b, ¢ X, and {ay, as, c1, by, by, c3} induces a 5-wheel, a contradiction. Next,
suppose that asz, b3 are not in X and are semiadjacent, and so c3 € X, and hence cq, c2 ¢ X; but then
{ai,as, by, by, c1,c3} induces is a 5-wheel, a contradiction. Thus no two members of {a;, b;, ¢c;} \ X are
semiadjacent, for i =2, 3. But then G is a line trigraph, and

({a1}, {a0, az, a3} \ X, {b1, 2, c3}\ X, {bo, b2, b3, c1} \ X)

is a biclique, a contradiction.

This completes the argument when (G, Z) € Z; now suppose that (G,Z) € Z3. Let H and
hi-hy-h3-hg-hs be as in the definition of Z3. Suppose that some vertex w of H is adjacent to
ha, hs, hg. Since ({haw, hahs}, {why, hshs}) is not a W-join of G, there is a vertex w’ # w, hy, h3, hy
adjacent to hs; but then the subtrigraph of G induced on {wh;, why, hshg, w’hs, hohs, whs} is a 5-
wheel, a contradiction. Thus there is no such vertex w, and so every vertex of H different from
hi,...,hs has at most two neighbours in {hy, h3, hs}.

If some vertex w is adjacent to hy,hs (and therefore not to hs), then ({why, wha}, E(H) \
{why, why}) is a pseudo-2-join of G, a contradiction. If there are two vertices w, w’ of H both adja-
cent to hy, h3, then ({why, w'hy}, {whs, w’h3}) is a W-join, a contradiction. Thus at most one vertex
of H is adjacent to both hy, h3, and similarly at most one to hs, hs. But then (G, Z) is a linear interval
stripe. This proves 6.3. O

7. One-ended stripes

Now we prove an analogous theorem for unbreakable quasi-line stripes (J, Z) with |Z| =1, for
the second part of 5.1. First let us make it easier to identify bubbles.

7.1. Let G be a circular interval trigraph, and let z be a simplicial vertex of G. Then (G, z) is a bubble.

Proof. The result is clear if G is a strong clique, and so we may assume that some vertex is antiad-
jacent to z. Let ¥ and Fq, ..., Fx € ¥ be as in the definition of circular interval trigraph. Since some
vertex is antiadjacent to z, the union of all the sets F; that contain z is homeomorphic to a closed
interval I say. Moreover, since z is simplicial, every two vertices in [ are strongly adjacent; and so
we may replace all the sets F; that contain z by I. Thus we may assume that z belongs to F; and
to none of Fy, ..., Fy. Moreover, since z is simplicial we may assume that no endpoint of F; belongs
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to V(G) (by extending F; slightly if it has an endpoint in V(G)). But then (G, Z) is a bubble. This
proves 7.1. O

We must look at several of the classes Z;, and some of them need “hex-expansion”, so we begin by
defining this. If A, B, C are strong cliques of a trigraph G, pairwise disjoint and with union V(G), we
call (G, A, B, C) a three-cliqued trigraph. One type of three-cliqued trigraph of special interest to us is
as follows. Let G be a circular interval trigraph, and let X be a circle with V(G) € X, and Fq, ..., Fx C
X, as in the definition of circular interval trigraph. By a line we mean either a subset X C V(G) with
|X| <1, or a subset of some F; homeomorphic to the closed unit interval, with both endpoints in
V(G) and strongly adjacent. Let Lq, Ly, L3 be pairwise disjoint lines with V(G) C L; UL, U Ls; then
(G,V(G)NL1,V(G)NLy, V(G)NLs) is a three-cliqued claw-free trigraph. We call such a three-cliqued
trigraph a trisected circular interval trigraph. (Note that there are three-cliqued trigraphs (G, A, B, C)
with G a circular interval trigraph, that are not trisected. For instance, let G be the graph with vertex
set {vq,...,Vvs} and edge set

{V1va, vaV3, V3Vy, V1 Vg, V4Vs5, V1Vs);

then G is a circular interval trigraph, but the partition {{v1, v4}, {v2, v3}n{vs}} into three cliques does
not yield a trisection.)

Let (Gy, A;, Bi, C;) be a three-cliqued trigraph with V(G;j) # @, for i =1, 2. Construct G by taking
the disjoint union of G; and Gy, and then making

e A; strongly complete to A, U C, and strongly anticomplete to B,
e B strongly complete to A, U B, and strongly anticomplete to Cs,
e (q strongly complete to B, U C and strongly anticomplete to As.

We say (G, A1 U Ay, B1 UB;,C; UCy) is a hex-join of (G1, A1, B1,Cq1) and (G, Az, B2, C2). If Gq, G»
are claw-free then so is G, but hex-joins do not necessarily preserve being quasi-line.
We will often need the following.

7.2. Let (G, A, B, C) is a hex-join of (G1, A1, B1, C1) and (G2, A3, B2, C2). Suppose that

o G is quasi-line,
e (G1, A1, By, Cq) is a trisected circular interval trigraph, and G1 has a triad, and
e there are no twins of G both in V (G3), and there is no W-join (P, Q) of G with P U Q C V (G>).

Then (G, A, B, C) is a trisected circular interval trigraph.

Proof. Let T C V(Gy) be a triad. Let H be the trigraph induced on T UV (G3). Then T is isolated in H,
so by 3.1 it follows that H is a circular interval trigraph. Let V(H) C X where X is a circle, and V (H)
is in the appropriate circular order. Let T = {t1, to,t3} where t;{ € A1, tp € By and t3 € Cy. Let [{ C X
be the closed interval of X with endpoints t;, t3 not containing t1, and define L;, L3 similarly. Since
ty, t3 are antiadjacent to tq, it follows that every vertex in Li is antiadjacent to t{, and similarly for
i=1,2,3 every vertex of L; is antiadjacent to t;. Since each vertex of G, is antiadjacent to exactly one
of t1,ty, t3, we deduce that V(G2) N L; =B, and V(G) NLy =C>, and V(G2) N L3 = A,. We deduce
that (Ga, Az, B2, Cy) is a trisected circular interval trigraph. Now the hex-join of the two trisected
circular interval trigraphs (G1, A1, B1,Cq) and (G, Az, By, Cy) is a third trisected circular interval
trigraph (to see this, arrange the six cliques in a circle in the order A1, Ay, B, B2, Cq, C2, in such a
way that for i =1, 2 the restriction to A; U B; U C; gives a representation of G; as a circular interval
trigraph). This proves 7.2. O

7.3.Let (G, A{UAy, B{UBy, C1UCy) be a hex-join of (G1, A1, B1, C1) and (G2, Az, By, C2).If G is quasi-line,
then
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o if there exist a,a’ € Ay, b € B, ¢ € Cy such that a, b, ¢ are pairwise adjacent, and a’ is antiadjacent to
b, c, then A1 is strongly complete to B1,

o ifthere exista,a’ € Ay, b, b’ € By, ¢ € Co such that the pairs ab, d’c are adjacent, and the pairs ac, bc, a’b
are antiadjacent, and b’ is adjacent to all of a, d’, c, then C1 = @.

Proof. For the first statement, suppose that a; € A1 and by € By are antiadjacent; then {a;,c,b, by,
a’,a} induces a 5-wheel. For the second, if ¢; € C; then {a,d’,c,cq,b,b’} induces a 5-wheel. This
proves 7.3. O

Let (G, A, B, C) be a three-cliqued trigraph, and let z € A such that z is strongly anticomplete to
BUC. Let V1, V3, V3 be three disjoint sets of new vertices, and let G’ be the trigraph obtained by
adding V1, V3, V3 to G with the following adjacencies:

V1 and V, U V3 are strong cliques,

V1 is strongly complete to B U C and strongly anticomplete to A,
V5 is strongly complete to C U A and strongly anticomplete to B,
V3 is strongly complete to AU B and strongly anticomplete to C.

(The adjacency between Vi and V, U V3 is unspecified.) It follows that z is a simplicial vertex of
G’. We say that (G', z) is a hex-expansion of (G, A, B, C). Hex-expansions are thus a special case of
hex-joins, and we often need to apply 7.3 to hex-expansions. It is a little tricky to keep track of the
symmetry, so for convenience, let us write out some consequences of 7.3 for hex-expansions.

74. Let (G', z) be a hex-expansion of (G, A, B, C), with sets V1, V5, V3 as above.

o Ifthere exista € A,b € B, and ¢, ¢’ € C, such that a, b, c are pairwise adjacent, and ¢’ is antiadjacent to
a, b, then V is strongly complete to V5.

e Ifthere exista € A,b,b’ € B, and c € C such that a, b, ¢ are pairwise adjacent, and b’ is antiadjacent to
a, ¢, then V1 is strongly complete to V3.

o If there exista,a’ € A,be B,c e C,andd € BUC \ {b, c}, such that the pairs ab, b’c are adjacent, and
the pairs bc, ac, ab’ are antiadjacent, and d is adjacent to all of a, d’, b, c, then V1 = .

o Ifthere existac A,b,b’ € B,ce C,andd € AU C\ {a, ¢}, such that the pairs bc, ab’ are adjacent, and
the pairs ab, ac, b’c are antiadjacent, and d is adjacent to all of a, b, b’, ¢, then Vo = (.

o Ifthere existae A,be B,c,c’ € C,and d € AU B\ {a, b}, such that the pairs ac, bc’ are adjacent, and
the pairs bc, ab, ac’ are antiadjacent, and d is adjacent to all of a, b, ¢, ¢/, then V3 = @.

Proof. Since (G',CUV{, AU Vy, BU V3) is the hex-join of (H, Vq, V>, V3) and (G, C, A, B), where
H = G’|(V1 U V5 U V3), the first assertion follows from the first assertion of 7.3, and also the third
assertion with d € B follows from the second assertion of 7.3. There are five other ways to view this as
a hex-join; for instance, (G’, CUV,, BUVq, AUV3) is the hex-join of (H, V3, V1, V3) and (G, C, B, A),
and the second statement of 7.3 applied to this yields the fifth assertion of the theorem when d € B.
We leave checking the remainder to the reader. This proves 7.4. O

The analogue of 6.3 is the following.
7.5. Every unbreakable quasi-line stripe with one end is a bubble.
Proof. Let (G,Z) be an unbreakable quasi-line stripe where |Z| = 1. Then, by 6.1, (G, Z) € Z; U
-+-U Z15, and hence belongs to Z; for some i with 5 < i< 15 since no 1-ended stripes belong to Z;
for 1<i<4.By6.2,i#5,7, and Zs is the class of bubbles, so we must check Z; for i =8,9,...,15.
Let Z = {z} say.

(1) (G, 2) ¢ Zs.
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This follows from 5.3.
(2) If (G, Z) € Zg then (G, Z) is a bubble.

From the definition of Zy, it follows that G is antiprismatic, with at least one triad, and every triad
contains z. Suppose first that there is only one triad. Then this triad is isolated, and by 3.1 it follows
that G is a circular interval trigraph; and so 7.1 implies that (G, Z) is a bubble.

Thus we may assume that z belongs to at least two triads. By 4.4, either G is a line trigraph of a
subgraph of Kg, or G is of H7-type. If G is a line trigraph, then since z is its only simplicial vertex,
Theorem 10.3 of [5] implies that (G, Z) is a bubble. If G is of H;-type then G admits a generalized
2-join, which is impossible. This proves (2).

(3) (G, Z) ¢ Z10.

Suppose that (G, Z) € Z10. From the definition of Zig, there is a three-cliqued trigraph (H, A, B, C)
and a subset X € V(H) such that (G, Z) is a hex-expansion of (H \ X, A\ X, B\ X, C), satisfying the
following:

V(H) = {z, a1, a2, bo, b1, b2, b3, c1, 2, d};

A={z,a1,ay,d}, B={bg, b1, by, b3}, C={c1,c2} and {ay, b1, c2} are strong cliques;

ay is strongly adjacent to by and semiadjacent to by; by, co are semiadjacent; by, c1 are strongly
adjacent; bs,cq are either semiadjacent or strongly adjacent; by,d are either semiadjacent or
strongly adjacent; and all other pairs are strongly antiadjacent;

X C{ay, by, bs,d} such that either a; € X or {b,, b3} C X.

Let V1, V,, V3 be as in the definition of hex-expansion; thus, V1 is strongly complete to (BUC) \ X,
and V; is strongly complete to (CUA)\ X, and V3 to (AUB)\ X, and V3 is strongly complete to V3.
From the first statement of 7.4 applied to aq, b1, c2, c1 it follows that V; is strongly complete to V5,
and from the same applied to ay, by, b, 2 it follows that V is strongly complete to V3. Moreover
V3 is strongly complete to V3, so V1 UV, U V3 is a strong clique.

First suppose that a; € X. Since

(V3. {bo, z,d}\ X, V(G) \ ({bo, z,d} U V3))

is not a pseudo-2-join, it follows that {bg, z,d} \ X is strongly stable, and so d € X. But then bg is
simplicial, contradicting that (G, Z) is unbreakable. Thus a; ¢ X, and so by, b3 € X; but then ¢y is
simplicial, again a contradiction. This proves (3).

(4) If (G, Z) € Z11 then (G, Z) is a bubble.

From the definition of Zii, there is a three-cliqued trigraph (H, A, B, C) and a subset X of V(H),
such that (G, z) is a hex-expansion of (H\ X, A\ X,B\ X, C\ X), and (H, A, B, C) has the following
properties.

e |[Al=n+2,|Bl]=n+1and |C|=n>2, say A={ap,ai,...,0n,2}, B={bo,b1,...,bp} and C =
{c1,...,cn}

e For 0<1i, j<n,a;bj are adjacent if and only if i = j; and for 1<1i, j <n, ¢;,a; are antiadjacent
if and only if i = j, and ¢;, b; are antiadjacent if and only if i = j.

o All other pairs are strongly antiadjacent.

Moreover, X C AU BUC \ {bg, z} with |C \ X| > 2. There are no semiadjacent pairs except

e a; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then b; € X,
e b; is semiadjacent to c; for at most one value of i € {1,...,n}, and if so then g; € X,
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e a; is semiadjacent to b; for at most one value of i € {1,...,n}, and if so then c; € X,
e ap may be semiadjacent to bg.

Let Vq1,V,, V3 be as in the definition of a hex-expansion; thus V; is strongly complete to
(BUC)\ X, and so on, and V3 is strongly complete to V3. We may assume that for 1 <i <n, not all
three of aj, b;, ¢c; belong to X.

We claim that Vq is not strongly complete to V3. For if ag ¢ X then the claim follows since
(V3,{ao, bo}, V(G) \ (V3 U{ao, bo})) is not a pseudo-2-join, and if ap € X then the claim follows since
b is not simplicial. Thus V7 is not strongly complete to V3. If there exists i € {1,...,n} such that
a;, b; ¢ X, then (since |C\ X| > 2) there exists j # i such that ¢; ¢ X, and the quadruple a;, b;, bo, c;
violates the second assertion of 7.4. Thus there is no such i. We may assume that ci,cy ¢ X. If
ai,ay € X, then cq,cp are twins if by,by € X and ({c1, c2}, {b1,b2} \ X) is a W-join otherwise, in
either case a contradiction. So X contains at most one of ay, a, and similarly at most one of by, by;
and since it contains at least one of aq, by, and at least one of ay, by, we may assume that aq, by ¢ X,
and ay, by € X. If c3 ¢ X then the same argument applied to c1, c3 and to ca, c3 shows that X contains
exactly one of aq, az and exactly one of ay, as, which is impossible. Thus c3,...,c; € X. If n > 3, and
as € X then ({by, b3}, {c2}) is a W-join, and if b3 € X then ({ai, as}, {c1}) is a W-join, in either case a
contradiction; so n =2. Now the circular order

z,a9,bo, b2, c1,02,0a1,2

(with ap removed if it belongs to X) shows that (H\ X,A\ X,B\ X,C\ X) is a circular interval
trigraph; and so 7.2 implies that G is a circular interval trigraph and hence (G, z) is a bubble by 7.1.
This proves (4).

(5) (G, 2) ¢ Zna.

Suppose that (G, Z) € Z13. From the definition of Z,, there is a three-cliqued trigraph (H, A, B, C)
and a subset X C A such that (G, Z) is a hex-expansion of (H\ X, A\ X, B, C), satisfying the following:

o A={v3, vy, Vs, Vg, Vg, z}, B={v1,v2}, and C ={v7, vg};

e z is strongly anticomplete to B U C; vg is strongly adjacent to vq, vg and strongly antiadjacent to
vy, v7; v1 is strongly antiadjacent to vg4, vs, vg, V7, semiadjacent to v3 and strongly adjacent to
vg; vy is strongly antiadjacent to vs, vg, v7, vg and strongly adjacent to vs; vs, v4 are strongly
antiadjacent to v, vg; Vs is strongly antiadjacent to vg; vg is semiadjacent to vg and strongly
adjacent to v7; and either v;, v4 are adjacent or vs, v; are adjacent;

o X C{vs3, vy, Vs, vg}, such that
- vy is not strongly anticomplete to {vs, va}\ X,

- vy is not strongly anticomplete to {vs, v} \ X,
- if XN {vy, vs} =0 then v, is adjacent to v4 and vs is adjacent to v7.

Let V4, V3, V3 be as in the definition of a hex-expansion. From the second assertion of 7.4 applied
to {vg, vq, v2, vg} it follows that Vy is complete to V3, and similarly V7 is complete to V5, so V1 U
V5 U V3 is a clique. Now

({ve}, (A\ (X U{vo})) UVa U Vs, {vq,vg}, Vi U{va, v7})

is not a biclique; and so there exist u € (A\ (XU {vg})) UV, U V3, ve{vy,vsg} and w e VU {vy, vy}
such that u,v,w ¢ X, u, v are adjacent, and w is adjacent to one of them and antiadjacent to the
other. Now there is a symmetry exchanging v; with vg_; for 1 <i <8, fixing vg and z, exchanging B
and C, and exchanging V, and V3. Because of this symmetry we may assume that v = v1. Since vq
is strongly anticomplete to {va4, vs, vg, z} U V3, it follows that u € {v3} U V3. If u = v3 (and therefore
v3 ¢ X) then w € V1 (because v, v3 are both strongly adjacent to v, and strongly antiadjacent to
v7); but then vs, vg, vo, vg, v1 contradicts the third assertion of 7.4 since V1 # @. Thus u € V3, and
therefore u, v are both strongly complete to {v,} U V; and strongly anticomplete to v7; but this is
contrary to the existence of w. This proves (5).
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(6) If (G, Z) € Z13 then (G, Z) is a bubble.

From the definition of Zi3, (G, Z) is a hex-expansion of a trisected circular interval trigraph in which
every vertex is in a triad. From 7.2 we deduce that G is a circular interval trigraph, and so by 7.1
(G, 2) is a bubble. This proves (6).

(7) (G, 2) ¢ Z14.

Suppose that (G, Z) € Z14. From the definition of Z14, (G, Z) is a hex-expansion of a three-cliqued
trigraph (G1, A1, A2, A3), and Gq is a line trigraph of a graph H, satisfying the following.

e There are four vertices vg, v1, v2, v3 of H, such that vq, vy, v3 are pairwise nonadjacent, vq is
the only neighbour of v, and vq, v, v3 have degree at least three.

e Every vertex of H different from vg, vy, v2, v3 is adjacent to both v;, v3, and at most one of
them is nonadjacent to v1.

e Fori=1,2,3, Aj is the set of edges of H incident with v;, and z is the edge vov1.

Let V(H) = {vo,V1,...,Vy} where k > 6, and vs,...,vy_q are adjacent to all of vq, vy, vs3. Let
V1,Vy, V3 be as in the definition of a hex-expansion. Thus V, is strongly complete to V3. From
the second assertion of 7.4 applied to {viv4, vaVv4, v3V4, vaVs} it follows that V¢ is complete to V3,
and similarly V; is complete to V;. But then G is a line trigraph, and since V (G) is not the union of
two strong cliques, this contradicts Theorem 10.3 of [5]. This proves (7).

(8) (G.2) ¢ Z1s.

Suppose that (G, Z) € Z15. From the definition of Zis, there is a three-cliqued trigraph (H, A, B, C)
and a subset X € B U C such that (G, Z) is a hex-expansion of (H \ X, A, B\ X, C\ X), satisfying the
following. (We are correcting an error from [5] here.)

e V(H)={vq,...,vg} where z=vg.

e v;,vj are strongly adjacent for 1 <i < j <6 with j—i < 2; the pairs vivs and vpve are
strongly antiadjacent; v1, vg, v7 are pairwise strongly adjacent, and v is strongly antiadjacent
to va, V3, Vg, V5; V7, vg are strongly adjacent, and vg is strongly antiadjacent to vq,..., vg; the
pairs viv4 and v3vg are semiadjacent, and v is antiadjacent to vs.

e A={vy,vg}, B={v1,v2,v3},C={vyg, Vs, ve}, and X C {v3, v4}.

Let V4, V3, V3 be as in the definition of a hex-expansion. There is a symmetry exchanging v; with
vy_; for 1 <i <6, fixing v7 and z, exchanging B with C, and exchanging V, with V3. From the first
assertion of 7.4 applied to {vq, vs, vg, v7}, it follows that V; is complete to V5, and from the symme-
try V is complete to V3. Moreover, by the fourth assertion of 7.4 applied to v7, v1, v3, vs, vg, either
vz € X or V, = . Suppose that v3 € X. Since vs is not simplicial, it follows that v, is semiadjacent
to vs. But then

({ve}, V1 U Vo U {va, vs}\ X, {v1, v7}, {v2, vg} U V3)

is a biclique, a contradiction. Thus v3 ¢ X, and so V, = #. From the symmetry, V3 = (. But then
({v7,vs}, V(G) \ {v7, vg}) is a 1-join, a contradiction. This proves (8).

From (1)-(8), this proves 7.5. O

8. Stripes without ends

In view of 6.3 and 7.5, to complete the proof of 5.1 and hence to prove 1.1, it remains to show the
following:
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8.1. If (G, ) is an unbreakable quasi-line stripe, then G is a circular interval trigraph.

Proving 8.1 is the goal of the remainder of the paper. We say that a trigraph G admits a hex-join
if there exist A, B, C such that (G, A, B, C) is the hex-join of two three-cliqued trigraphs. The main
theorem of [4] asserts:

8.2. Let G be a claw-free trigraph. Then either

e GcSyU---USy, 0r
o G admits either twins, or a W-join, or a 0-join, or a 1-join, or a generalized 2-join, or a hex-join.

We begin with:

8.3.If (G, ) is an unbreakable quasi-line stripe, and either G is antiprismatic, or G does not admit a hex-join,
then G is a circular interval trigraph.

Proof. Let (G, ) be an unbreakable quasi-line stripe, and suppose that G is not a circular interval
trigraph. We must show that G is not antiprismatic, and G admits a hex-join. By hypothesis, G does
not admit twins, a W-join, a 0-join, a 1-join or a generalized 2-join, and has no simplicial vertex.
Since every trigraph of H7-type admits a generalized 2-join, it follows that G is not of H-type. Since
G has no simplicial vertex, and |V (G)| > 3 (since G is not a circular interval trigraph), Theorem 10.3
of [5] implies that G is not a line trigraph. Consequently 4.1 implies that G is not antiprismatic.

Suppose that G € S; for some i € {0,...,7}. By 5.2 and 5.3, i #1,2,4,5, and we have seen that
i#0,7, and i # 3 by hypothesis. Thus i = 6; let ag,bo be as in the definition of Sg. If ag,bp are
strongly antiadjacent then they are both simplicial, which is impossible. If ag, by are semiadjacent,
let Vq ={ao,bo} and V, = V(G) \ Vq; since V1, V, are not strongly stable, (4, V1, V) is a pseudo-
2-join, a contradiction. This proves that G ¢ S; for i € {0,...,7}. By 8.2, G admits a hex-join. This
proves 8.3. O

In view of 8.3, we need to understand the quasi-line trigraphs G such that (G, #) is an unbreakable
quasi-line stripe and G admits a hex-join and is not antiprismatic. To do so, we apply a theorem of [5]
describing the structure of all three-cliqued claw-free trigraphs, and we next state that.

Here are some types of three-cliqued claw-free trigraphs.

e Let v, v, v3 be distinct nonadjacent vertices of a graph H, such that every edge of H is incident
with one of vq, vy, v3. Let v1, vy, v3 all have degree at least three, and let all other vertices of H
have degree at least one. Moreover, for all distinct i, j € {1, 2, 3}, let there be at most one vertex
different from vq, v, v3 that is adjacent to v; and not to v; in H. Let A, B, C be the sets of edges
of H incident with v, vy, v3 respectively, and let G be a line trigraph of H. Then (G, A, B, C) is
a three-cliqued claw-free trigraph; let 7Cq be the class of all such three-cliqued trigraphs such
that every vertex is in a triad.

e We denote by 7C, the class of trisected circular interval trigraphs (with notation as usual) with
the additional properties that no three of Fq,..., Fy have union X and that every vertex is in a
triad.

e Let G, J,A’, B/, C/, X be as in the definition of a near-antiprismatic trigraph. Let A= A"\ X and de-
fine B, C similarly; then (G, A, B, C) is a three-cliqued claw-free trigraph. We denote by 7C3 the
class of all such three-cliqued trigraphs with the additional property that every vertex is in a triad.

e Let G be an antiprismatic trigraph and let A, B, C be a partition of V (G) into three strong cliques;
then (G, A, B,C) is a three-cliqued claw-free trigraph. We denote the class of all such three-
cliqued trigraphs by 7C4. (In [2] we described explicitly all three-cliqued antiprismatic graphs,
and their “changeable” edges; and this therefore provides a description of the three-cliqued an-
tiprismatic trigraphs.) Note that in this case there may be vertices that are in no triads.

e 7Cs comprises two classes of trigraphs. First, let H be the trigraph with vertex set {v1,..., vg}
and adjacency as follows: v;, v; are strongly adjacent for 1 <i < j <6 with j—i<2; the pairs
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vivs and vyvg are strongly antiadjacent;vq, vg, vy are pairwise strongly adjacent, and vy is
strongly antiadjacent to v, v3, v4, V5; V7, Vg are strongly adjacent, and vg is strongly antiadja-
cent to vq,..., vg; the pairs viv4 and v3vg are semiadjacent, and v, is antiadjacent to vs. Let
A ={vq,v3,v3}, B={va,Vvs,ve} and C = {v7, vg}. Let X C {v3, v4}; then (H\ X,A\ X,B\ X, C)
is a three-cliqued claw-free trigraph, and all its vertices are in triads.

e The second class of trigraphs in 7Cs is as follows. Let H be the trigraph with vertex set
{v1,...,vg}, and adjacency as follows: the sets A = {v1,Vva}, B ={v3, V4, Vs, Vg, Vg} and C =
{v7, vg} are strong cliques; vg is strongly adjacent to vq, vg and strongly antiadjacent to v;, v7;
vy is strongly antiadjacent to vg4, vs, vg, V7, semiadjacent to v3 and strongly adjacent to vs; v»
is strongly antiadjacent to vs, vg, v7, vg and strongly adjacent to vs; v3, v4 are strongly antiadja-
cent to vy, vg; vs is strongly antiadjacent to vg; vg is semiadjacent to vg and strongly adjacent
to v7; and the adjacency between the pairs vov4 and vsvy is arbitrary. Let X C {v3, v4, Vs, vg},
such that
- vy is not strongly anticomplete to {vs, v4}\ X,

- vy is not strongly anticomplete to {vs, v} \ X,

- if v4, vs ¢ X then v; is adjacent to v4 and vs is adjacent to v7.

Then (H \ X, A, B\ X, C) is a three-cliqued claw-free trigraph. If in addition every vertex is in a
triad, we say that (H\ X, A, B\ X,(C) € 7Cs.

If (G, A, B,C) is a three-cliqued trigraph, and H is a thickening of G, let X, (v € V(G)) be the
corresponding strong cliques of H; then U,caX, is a strong clique A’ say of H, and if we define
B’,C’ from B, C similarly, then (H, A’, B’,C’) is a three-cliqued trigraph, that we say is a thickening
of (G, A, B,C). If (G, A, B,C) is a three-cliqued trigraph, and {P, Q, R} ={A, B, C}, then (G, P, Q,R)
is also a three-cliqued trigraph, and we say it is a permutation of (G, A, B, C).

Let n >0, and for 1 <i<n, let (Gj, A, Bj, C;) be a three-cliqued trigraph, where Gq,...,G, all
have at least one vertex and are pairwise vertex-disjoint. Let A=A;U---UA,;, B=B1U---UByp, and
C=C1U---UC(Cy, and let G be the trigraph with vertex set V(G1)U---U V(Gp) and with adjacency
as follows:

e for 1 <i<n, G|V(G;) =Gy;

e for 1 <i< j<n, A; is strongly complete to V(G;) \ Bj; B; is strongly complete to V(G;) \ Cj;
and C; is strongly complete to V(G;)\ Aj; and

o for 1<i< j<n,if ueA;and v e Bj are adjacent then u, v are both in no triads; and the same
applies if ue B; and ve Cj, and if u € C; and v € Aj.

In particular, A, B, C are strong cliques, and so (G, A, B,C) is a three-cliqued trigraph; we call the
sequence (Gj, A, Bj,C;) (i=1,...,n) a worn hex-chain for (G, A, B,C). When n =2 we say that
(G, A, B, C) is a worn hex-join of (G1, A1, B1, C1) and (G2, Az, B2, C2).

Theorem 4.1 of [5] asserts the following:

8.4. Every three-cliqued claw-free trigraph admits a worn hex-chain into terms each of which is a thickening
of a permutation of a member of one of TC1, ..., TCs.

To complete the proof of 8.1, we need a few more lemmas.

8.5. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, #)) is an unbreakable stripe, and such
that (G, A, B, C) is a hex-join of (G1, A1, B1, C1) and (G2, Az, B2, C2). Then (G4, A1, B1, C1) is not a permu-
tation of a member of TC;.

Proof. Suppose it is; thus (G1, A1, B1,Cq) € TCq. Choose H, vy, vy, v3 as in the definition of 7C;.
Suppose first that some vertex u of H is adjacent to all of vi, vy, v3. Let e; be the edge uv; for
i=1,2,3. Since vi has degree at least three, there is an edge f; incident with v; and not with u;
and so eq, f1 € A, e; € B, e3 € C, and by the first assertion of 7.3 (with the parts of the hex-join
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exchanged) it follows that A; is strongly complete to C,. Similarly A;, By, C, are pairwise strongly
complete, and so G is a strong clique. Since G has no twins, it follows that |A3|, |Bz2|, |C2| < 1. Thus
G is a line trigraph (if there exists a; € Ay, add a; to H as an edge joining v1, v2, and similarly for
By, C3). But this contradicts Theorem 10.3 of [5].

Thus no such vertex u exists, and so every vertex different from vq, vy, v3 has degree at most
two. Suppose next that some vertex of H has degree one; say u is adjacent only to vi. Let u’ be
another neighbour of vq. If u’ also has degree one, then uvq,u’vy are twins in G, a contradiction. If
u’ has degree two in H, let u’ be adjacent to vi, vy say; then ({uvq,u’v1}, {u’vy}) is a W-join of G,
a contradiction. This proves that every vertex in H different from v, v2, v3 has degree two. Suppose
that u1, uy are distinct vertices of H, both adjacent to both v, v,. Then ({uyvy, uavi}, {u1va, uzva})
is a W-join of G, a contradiction. It follows that no two vertices in V (H) \ {v1, v2, v3} have the same
neighbours; but this is impossible since v1, v, v3 have degree at least three. This proves 8.5. O

8.6. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, ¢ is an unbreakable stripe, and such
that (G, A, B, C) is a hex-join of (G1, A1, B1, C1) and (G2, Az, B2, C2). Suppose that (G1, A1,B1,Cq) is a
permutation of a member of T C3. Then |V (G1)| =6 and (G, A1, B1, Cq) is a trisected circular interval tri-
graph.

Proof. Suppose (without loss of generality) that (G1, A1, By, C1) € TC3. Let
J,A B ,C',aq,...,an,bo,...,bn,C1,...,Cns X

be as in the definition of near-antiprismatic, such that
(G1,A1,B1,C)=(J\ X, A"\ X, B\ X, C"\ X).

Since |C’\ X| > 2, we may assume that for 1 <i < n, not all of a;, b;, ¢c; belong to X (by reducing n by
one and removing these three vertices from J).

1) c1,...,cn g X,

For suppose that c; € X. Since not all of a;, b;, ¢; € X, we may assume that a; ¢ X say. But every vertex
of J\ X is in a triad, and yet every triad of ] containing a; also contains c;, a contradiction. This
proves (1).

(2) X contains at most one of ay, ..., ay and at most one of b1, ..., by.

For suppose that ai,a; € X say. By (1), c1,¢c2 ¢ X. If by,by € X then c1,c, are twins of J\ X and
hence of G, and otherwise ({c1, c2}, {b1,b2}\ X) is a W-join of J \ X and hence of G, a contradiction.
This proves (2).

(3) For1 < i< n, X contains at least one of a;, b;.

For suppose that a;,b; ¢ X say. By (1), c¢1,c2 ¢ X. By three applications of 7.3, to {ap,as, by, c2},
{bo,aq, b1, c2} and {c1, a1, b1, c2}, it follows that A;, By, C, are pairwise strongly complete. Since ag is
not a simplicial vertex of G we deduce that ag, bg are adjacent; but then

(A2, {ao. bo}. V(G) \ (A2 U {ao, bo}))
is a pseudo-2-join of G, a contradiction. This proves (3).

From (1)-(3) it follows that n =2 and we may assume that X = {aq,b,}. But then J\ X is a
trisected circular interval trigraph; the appropriate circular order is

ao, az, €1, ¢2, b1, bo.

This proves 8.6. O
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8.7. Let (G, A, B, C) be a three-cliqued quasi-line trigraph such that (G, ¢) is an unbreakable stripe, and such
that (G, A, B, C) is a hex-join of (G1, A1, B1, C1) and (G2, Az, B2, C2). Then (G, A1, B1, C1) is not a permu-
tation of a member of T Cs.

Proof. Suppose (without loss of generality) that (Gi, A1, B1, C1) € 7Cs. There are two cases in the
definition of 7Cs. Let H, vq, ..., vg, X be as in the first case, with
(G1,A1,B1,C) = (H\ X, {v1,v2, v3}\ X, {va, v5, ve} \ X, {v7, vg}).
From 7.3 applied to {vq, vg, v7, vg} it follows that By, C, are strongly complete. But then vg is a
simplicial vertex of G, a contradiction.
Now let H, vq,..., vg, X be as in the second case of the definition of 7Cs, with
(G1,A1,B1,C1) = (H\ X, {v1,v2}, {v3, v4, V5, v, vo} \ X, {v7, vg}).

From three applications of 7.3, to {va, vy, vs, vo}, {v7, V1, v, V9} and to {v;i, v, vg, vg} (where i €
{3, 4} is chosen so that v; ¢ X; this is possible since v, is not strongly anticomplete to {vs, v4}\ X),
we deduce that A, B, C, are pairwise strongly complete. If C; = ¢ then
({ve}. A2U{v1,v2,v3,va}\ X, B U{vs, v6, v7, vg} \ X)
is a generalized 2-join of G, a contradiction. Thus C, # @. By the second assertion of 7.3, applied to
{v1,vg, ve, v7, vg}, it follows that ve € X. Hence vs ¢ X and vs, v; are adjacent; and so
(B2.{vs,v7}, V(G) \ (B2 U{vs, v7}))

is a pseudo-2-join of G, a contradiction. This proves 8.7. O
Finally, we shall need the following, Theorem 16.1 of [4]:

8.8. Let G be a claw-free trigraph, and let B1, By, B3 be strong cliques in G. Let Z = B1 U By U B3. Suppose
that:

e Z#£V(G),
e there are two triads Ty, T, C Z with |T1 N Ty| =2, and
e thereisno triad T in G with TN Z| = 2.

Then either

e there exists V C Z with Ty, Ty C V such that V is a union of triads, and G is a hex-join of G|V and
G|(V(G)\ V), where (VN By, V NB,, VN B3) is the corresponding partition of V into strong cliques, or

e there are twins in one of By, By, B3, both in triads, or

e thereis a W-join (V1, V) such that V1 is a subset of one of B1, By, B3 and V> is a subset of another.

Now we are ready for the proof of 8.1.

Proof of 8.1. Let G be a quasi-line trigraph such that (G, ) is an unbreakable stripe. We must show
that G is a circular interval trigraph. By 8.3, we may assume that G is not antiprismatic, and admits
a hex-join.

(1) There are three cliques A, B, C such that (G, A, B, C) is a hex-join of (Gj, Aj, Bi, Ci) (i =1, 2) where G4
is not antiprismatic and every vertex of Gy is in a triad.

For since G admits a hex-join, we can choose three cliques A, B, C such that (G, A, B,C) is a hex-
join of some (Gj, Aj, Bj, C;) (i=1, 2). Since G is not antiprismatic, one of G1, G is not antiprismatic,
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say Gi. Let A7 be the set of all vertices in A; that are in triads, and define B, C similarly. Let
Z = A UB{ U(j. Since Gy is not antiprismatic, there are two triads T1, Tz included in Z with two
elements in common. If T is a triad with |T N Z| =2, and ¢t is its element not in Z, then t ¢ V(Gy)
from the definition of A7, B|,C}, and t ¢ V(G2) from the definition of a hex-join, a contradiction.
Thus there is no triad T with [T N Z| = 2. Since G is slim, there are no twins and no W-join in G, and
so from 8.8 applied to Z and G, we deduce that there exists V C Z with T, T, € V such that V is
a union of triads, and G is a hex-join of G|V and G|(V(G) \ V) (with appropriate choices of cliques).
This proves (1).

Let us choose A, B, C, G1, G etc. as in (1) with |V (G1)| minimum.
(2) (G1, A1, B1, Cq) does not admit a worn hex-join.

For suppose that (G1, A1, By, C1) is a worn hex-join of (H1, P1, Q1, R1) and (H3, P2, Q2, R2) say.
The worn hex-join is actually a hex-join since every vertex of Gp is in triad. One of Hi, Hy is not
antiprismatic, since Gq is not antiprismatic; and for i =1, 2, every vertex of H; belongs to a triad
of Hj, since the same holds for G1. Now

(H1, P1, Q1, R1), (Ha, P2, Q2, R2), (G2, Az, By, (2)

is a hex-chain for (G, A, B,C), and so (G, A, B,C) is the hex-join of (H{, P1,Q1,Ry) and (H3, P3,
Q3, R3), where (Hs, P3, Q3, R3) is the hex-join of (H3, P2, Q2, R2) and (G, Az, B2, C2); so from the
minimality of |V (G1)]| it follows that Hp is antiprismatic. But

(H3, P2, Q2, R3), (G, Az, B2, C2), (H1, Q1, R1, P1)

is also a hex-chain for (G, A’, B/, C’) (for some choice of A’, B/, C’), and so by the same argument H;
is antiprismatic, a contradiction. This proves (2).

From 8.4 it follows that (G1, A1, By, C1) is a thickening of a permutation of some member of one
of 7Cq,...,7Cs. Since G is slim, it follows that (G1, A1, B1, C1) is not a non-trivial thickening of any
three-cliqued trigraph; and so (G, A1, B1, C1) is a permutation of a member of 7Cy,..., 7Cs, say of
TCi. Now i # 4 since G is not antiprismatic. Suppose that (G1, A1, B1,C1) ¢ TCy. Then i € {1,3,5},
contrary to 8.5, 8.6, and 8.7. This proves that (Gq, Ay, B1,C1) € TC>. Since G7 is not antiprismatic,
there is a triad in G1. Consequently G is a circular interval trigraph by 7.2. This completes the proof
of 8.1, and hence of 1.1. O
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