Skip to main content

Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions

Author(s): Blood-Forsythe, Martin A.; Markovich, Thomas; DiStasio, Robert A. Jr; Car, Roberto; Aspuru-Guzik, Alán

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1mv42
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlood-Forsythe, Martin A.-
dc.contributor.authorMarkovich, Thomas-
dc.contributor.authorDiStasio, Robert A. Jr-
dc.contributor.authorCar, Roberto-
dc.contributor.authorAspuru-Guzik, Alán-
dc.date.accessioned2020-10-27T18:31:03Z-
dc.date.available2020-10-27T18:31:03Z-
dc.date.issued2015-10-27en_US
dc.identifier.citationBlood-Forsythe, Martin A., Markovich, Thomas, DiStasio, Robert A., Car, Roberto, Aspuru-Guzik, Alán. (2016). Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions. Chemical Science, 7 (3), 1712 - 1728. doi:10.1039/C5SC03234Ben_US
dc.identifier.issn2041-6520-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1mv42-
dc.description.abstractAn accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al., J. Chem. Phys., 2014, 140, 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C60@C60H28 buckyball catcher host–guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.en_US
dc.format.extent1712 - 1728en_US
dc.language.isoen_USen_US
dc.relation.ispartofChemical Scienceen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleAnalytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactionsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1039/C5SC03234B-
dc.date.eissued2016-07en_US
dc.identifier.eissn2041-6539-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
c5sc03234b.pdf1.02 MBAdobe PDFView/Download
c5sc03234b1.pdf7.34 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.